作为一无名无私奉献的教育工作者,常常需要准备教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?
今天上午听了校级研究课卢xx老师的执教的《解决问题的策略——列举》感触很深。
无论是卢老师精心的教学设计,巧妙的课堂构思,还是学生的积极配合,踊跃发言都给我们留下了深刻的印象。
在下午的集体备课中,很多老师都提到了卢老师类似的优点,这里不再多说,只是想和大家分享一下听完这堂课后的一些困惑和想法。
1、本课的教学重难点是让学生理解一一列举的'方法,并能主动运用这种方法来解决生活中的一些问题。首先,我认为让学生明白为什么我们要用一一列举的策略来解决问题是最重要的。教学中,教师所呈现给学生的几道例题:如用18跟栅栏围长方形,有几种围法?订阅3种书籍的不同订法……都需要首先让孩子明白为什么我们要选择一一列举的策略,选择其他方法容易出现什么问题?这一点卢老师做的比较到位,她通过展示了几位同学的作业情况,让孩子自己发现问题,有的答案重复了,有的答案遗漏了,为了防止类似的情况发生,接着卢老师顺其自然的提到了一一列举法,让孩子在遇到问题和困扰后接受起来比较容易些。
2、本课的第二个重点是教孩子如何使用一一列举法?使用一一列举法书上主要是列表法。这种方法虽然可以但不实用。一、上课时孩子没有时间去画表格。二、这种方法相对来说不是最方便和最容易让孩子接受的。在教学例2时,订阅3种书籍有几种方法呢?卢老师让孩子放手自己去解决。结果让人惊喜,大部分孩子解决起来毫无困难,甚至还有相当一部分孩子已经想到了用字母或者数字来代替书籍的名字来列举。这种方式简洁明了,通俗易懂,最重要的是孩子自己动脑思考的结果,不得不让在场听课的老师为之惊叹。看来放手让孩子去做,有时确实能够获得意外的惊喜。听到这里,我不禁要问,既然孩子最易接受用符号来列举的方法,那书上介绍的列表法是否可以不讲或者略讲呢?
3、例3是道关于投镖的问题。标靶上有3种情况,10环,8环和6环。投2次得到的总环数会有几种情况?在这里,卢老师和学生一起探讨了4种情况:一、两次投中的环数相同。二、两次投中的环数不同。三、一次投中一次未投中。四、两次都未投中。我个 这样分类讲起来可能才更加清楚点。
4、投标的结果出现了重复。如8+8=16,10+6=16,这两种情况尽管答案相同,但表示的意思是不一样的,教师在讲解的时候一定要注意讲清楚。为了防止学生的答案写的不清楚,在答时也应建议学生将所有的答案有序排列,这样才能做到不重复,不遗漏。
以上是我听完课后一些不成熟的想法,希望能够与大家分享,还望批评指正,共同学习!
1、课前沟通不到位。
在一个陌生的环境,又有一些老师听课,孩子们本来就紧张,课前不仅没有做到及时与孩子们沟通,帮助他们减压,还用录播开始无形中又增加了压力,以至于原来在教室里积极活跃的孩子们,一个个下的正襟危坐、不敢越雷池一步,甚至到前面板演时腿发抖。作为教师课前一定要关注孩子的状态,及时做出调整。
2、课堂预设不到位。
在让两个孩子板演计算过程环节用时过长,以至于虽然完成了研究、总结、提炼出了解决两个未知量的问题可以用假设策略,但是没有时间做一些相应练习去加深印象。如果在学生选择方法书写环节意识到这一点,调整成投影展示,不仅可以完成强调步骤的完整条理,也可以空出时间加大练习。
虽然本节课没有完美落幕,虽然课堂练习度没有达到,但是在独立思考、小组交流、全班汇报,比较提炼假设策略等环节中,孩子们了解了什么情况下可以用假设,假设的关键是什么,假设的目的是什么,在假设时什么量不变,什么量改变。书写巡视中发现虽然步骤不是太完整,但是都能用自己喜欢的方法把假设策略表达出来。课堂上不可能做到面面俱到,本节课只要让孩子们了解到这些,在下节课着重强调书写格式是不是会更好!
教学内容:
苏教版三年级上册《解决问题的策略》第71—73页。
教学目标:
1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。
2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学准备:
多媒体课件、相关板贴
教学过程:
课前交流:
有9个小朋友要过一条河,河边只有一条小船(船上没有船夫),船上每次只能坐5个人,小船至少要运几次,才能使9人全部过河?
你们能想到好办法帮助他们过河吗?
一、导入新课
刚才同学们用我们所学的知识解决生活问题,其实解决数学问题也需要策略。(出示课题)今天我们来学习解决问题的策略。
二、导学探究
(一)理解题意
1、出示条件:“小猴帮妈妈摘桃,第一天摘了30个,第二天比第一天多摘5个。”
从题目中你知道了哪些信息?数学上把已经知道的信息称为条件,有了这两个条件就可以提问题了。出示问题:第三天摘了多少个?
学生口答。
指出:老师刚设了个陷阱。根据这两个条件只能求出第二天摘的,不能求第三天摘多少个!
2、如果我把其中一个条件改一下,(出示修改条件“以后每天都比前一天多摘5个”)现在可以算了吗?
看来这条件挺神奇的?一起来看看。以后每天都比前一天多摘5个,什么意思?
预设1:第二天比第一天多摘5个,第三天比第二天多摘5个……
同学们看,这个条件看上去很简单,但他却能从中找到这么多的隐含条件,并把它有序的表达出来。厉害!谁能像他这样有序的说一说?
指名说,结合多媒体出示:第二天比第一天多摘5个……第五天比第四天多摘5个。
追问:还能往下说吗?(出示:第六天比第五天……)还能再往下说吗?太多了,这么多条件可以用一句话来概括,一起说(多媒体变换,所有内容整合为“以后每天都比前一天多摘5个”)。
过渡:同学们真会思考。这句话还可以从不同的角度思考吗?
引导出示:第一天摘的+5=第二天摘的,(课件出示)你们能明白他的意思吗?老师明白了,他是倒过来想的,比前一天多摘5个就是后一天摘的,看得懂吗?谁能继续往下说。(结合回答,出示第二天摘的+5=第三天摘的……)
这么多条件其实也是一个意思,(所有条件隐去,变换为“前一天摘的+5=后一天摘的”),一起读一读。
预设2:
(没人能说。)以后每天可以是第二天吗?如果是第二天,那就比第几天多摘5个?(手指着板贴),也就是说:第二天比第一天多摘5个。以后每天可以是第三天吗?如果是第三天,那——第三天比第二天多摘5个(板贴)
预设3:
(学生回答30+5。)
30是第几天摘的?加5是想求什么?也就是说第一天摘的+5等于第二天摘的,(课件出示)你们能明白他的意思吗?
过渡:同学们真会思考。(大屏上留下:以后每天都比前一天多摘5个)这句话还可以从不同的角度思考吗?(接预设1过渡前的话)
小结:看似简单的一个条件,给大家一挖掘,竟然找到了这么多连续的隐含条件,这就是数学的魅力之处。
(二)分析数量关系
有了这么多的条件,能解决我们的问题吗?你打算怎么解答?先思考,再跟同桌说说。
(三)列式计算
1、都有办法了吗?把你的想法写在自己的练习本上。
(1)学生自练。
(2)交流:
展示1(列算式):你来说说是怎么想的。
结合学生介绍,相机板书算式。35指的是什么?这个5呢?求的是?你们看,第一步的结果,作为第二步的条件参与运算,帮助我们求出了下一个问题。数学就是这样,在已知、未知之间不停地转换。问题解决了吗?齐答一下。
展示2(出示表格):这个同学的方法,能看得懂吗?谁来说说。(生说)他列了个表格把每天摘的个数依次写了出来。这个方法怎么样?
2、出示问题:第五天摘了多少个?
(1)要求:不讨论,自己独立解决。先想想怎么做,想好了吗?拿出作业纸,第一题,可以填表,也可以列式计算,时间1分钟,开始。
(2)学生完成计算,教师巡视。
(3)展示交流。
展示1:一起看大屏幕。他选择的是填表,看一看,填的对吗?
展示2:他是列式解答的。第五天摘了50个,对吗?考考你们,求第四天摘的,用到了哪两个条件?根据第三天摘的,就能算出第四天摘的,有了第四天摘的,就能算出………
展示3:(出示:5×4=20(个),20+30=50(个)
预设①有个同学是这样做的,这个方法正确吗?5×4算的是什么呀?
预设②老师是这样做的,你们觉得有道理吗?5×4算的是什么呀?
第五天比第一天一共多20个,对吗?怎么想的?
第一天暂时不看,以后每天都比前一天多一个5,到了第五天一共比第一天多了几个5?也就是20个。知道了这个多的20,再加上第一天的,就算出第五天摘的。方法怎么样?也不错吧?
(四)反思总结
1、归纳方法。
刚才我们一共想到了3种方法(多媒体出示3种方法),其中有两种方法解题思路是一样的,你们发现了吗?他们都是怎样算的呢?
小结:他们都是从第一天摘的这个条件想起,加上第二天比第一天多摘的,就算出第二天摘的。有了第二天的,再根据这个条件算出第三天摘的,就这样,依次算出第四天、第五天。同学们,像这样从条件想起,一步步计算求出问题的方法,是一种解决问题的策略(出示箭头)。
再来看第三种方法,是根据这些条件发现第五天比第一天多摘了4个5,然后加上第一天的,就解决了问题。这种方法虽然思路不同,但也是从条件想起的策略。
2、回顾感悟。
同学们,我们一起解决了一道比较复杂的问题,让我们回顾一下解决问题的过程,都分了哪些步骤?
①生:我们要从条件想起。
师:是啊,从条件想起是解决问题的一种策略。根据对应的条件确定先算什么,再算什么。这个步骤就叫做——分析数量关系。
②生:我知道可以填表做,也可以列式算。
师:恩,这个步骤就是计算解答(板贴)。在解答问题时,方式可以多样,既可以填表,也可以列式。
③预设1:生:解决问题前要先找到条件。
师:不仅要找到条件,还要找到——(问题),对于比较复杂的条件,还要弄清每个条件的含义。这个步骤就是(理解题意),它是其他步骤的基础。
预设2:生:要找到条件和问题。
师:对,首先要找出条件和问题,对于比较复杂的条件,还要弄清每个条件的含义。这个步骤就是(理解题意),它是其他步骤的基础。
预设3:学生想不到看题。师:没有了?老是觉得有一个步骤也挺重要,就是理解题意(出示)。你们知道理解题意是什么意思吗?对,就是看清题目中的条件和问题,对于比较复杂的条件,还要弄清每个条件的含义。这个步骤是其他步骤的基础,可不能忘了。
总结:要能很好地解决一个数学问题,至少得有理解题意,分析数量关系,计算解答这三个步骤。
三、导练应用,增强认识
看来同学们的。收获还真不少。特别是掌握了从条件想起的策略,这是一个新本领。想用用这个本领吗?好,试一试。
(一)“想想做做”第1题。
1、第1小题。
(1)出示第一幅图。这是一个天平,看出了什么条件?还有吗?也就是——(出示:4个苹果重400克)
真不简单,从天平上发现了两个条件,能求什么问题?会解答吗?
(2)出示第2幅图,仔细看,又看出了什么条件?那根据这两个条件,又能求出什么?
(3)(出示两幅图)刚才,我们先根据4个苹果重400克求出了平均每个苹果重多少克;再根据橙子比苹果重20克求出了橙子的质量。这种解决问题的策略也是从条件想起。
2、第2小题。(出示题目)有三个条件了。你能根据这些条件提出问题吗?
(1)学生提问,相机出示问题。
(2)你觉得哪个问题最简单?根据哪两个条件来解决?怎么算?(出示算式)钢笔支数求出来了,下面我们可以求出(圆珠笔的支数),怎么算?
圆珠笔支数知道了,这个高难度的问题也可以解决了吧,谁来?
(二)完成“想想做做”第2题。
(1)老师拿出一个皮球,师生互动,感知球的多次下落与弹起。
(2)出示题目,认识条件。“一个皮球从16米的高处落下,如果每次弹起的高度总是它下落高度的一半。”
有2个条件,你觉得哪个比较复杂(学生说后,多媒体划下横线)
“每次弹起的高度总是它下落高度的一半”,怎么理解?
学生口答。
结合图观察:如果这里是16米,第一次下落后弹起的高度大概在哪?谁来指一指?
第二次弹起的高度大概在哪儿呢?
(3)(出示问题:第三次……):理解了题意,你能自己分析数量关系,解决问题吗。拿出作业纸,完成第2题。
交流汇报。第一次弹起?第二次呢?
反思:看第三次弹起的高度是?如果没有前两次的结果,你能直接得到第三次的结果吗?那有了第三次的结果我们就能进一步推断出第四次弹起的高度是几米?数学就是这样一环套着一环往下延伸。
四、自主实践,导悟提升
1、完成“想想做做”第3题。
(1)指名读题。
(2)有谁会做这个题目吗?
(3)(出示圆圈)一个圆圈表示1个小朋友,那18个圆圈就表示……?请同学们按照题目的要求,先找出芳芳和兵兵的位置,再解答。
(3)谁来汇报一下。芳芳和兵兵之间有几个人?
生:这是芳芳的位置?
追问:你是怎么想的?芳芳的位置在哪儿,你是根据什么条件确定的?兵兵呢?
(4)从条件想起,我们顺利的解决了问题。�
2、拓展延伸
过渡:同学们都很棒,老师想送给大家一个礼物,想要吗?谁第一个解决我的问题,我就把这个礼物送给他。准备好了吗,我要出题了。开始!
出示:妈妈买来3箱苹果,每箱5千克;又买来4箱梨子,共比苹果多40千克。梨子和苹果一共买了多少箱?
组织交流。
追问:这么多条件,为什么只用了两个条件?
指出:解决一个问题也不一定都要从条件想起,有时从问题想起也很快捷,这得具体问题具体分析。
五、全课总结
今天,我们一起学习了解决问题的策略。你有什么收获吗?
板书设计:
条
第一天摘了30个
解决问题的策略件 第二天比第一天多摘5个第三天比第二天多摘5个第四天比第三天多摘5个第五天比第四天多摘5个…… 问 题 第三天摘了多少个? 第五天摘了多少个?
教学设计
丹阳市导墅中心小学 周琴秀
[教学内容]
小学数学国标版六年级下册教科书p71解决问题的策略
[教学目标]
1、学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
2、学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
3、学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。
[教学重点]
理解转化策略的价值,丰富学生的策略意识,会用“转化”的策略解决问题。
[教学难点]
会用“转化”的策略解决问题。
[教学具]
课件,每生印一张例1的方格纸 /学生准备剪刀
[教学过程]
一、故事引入,创情激思。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀,在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”
“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
提问:听了这个故事,同学们受到了哪些启发呢?
小结:今天我们也要学习爱迪生和他的助手阿普顿,巧妙地运用一定的策略来解决一些陌生的实际问题,今天我们要学习的内容是“解决问题的策略”(四年级:列表法、还原法;五年级:列举法、还原法;六年级:替换法。)
二、合作交流,探究策略。
1.出示例1
师:首先请大家欣赏2个平面图形,以前我们学过吗?生:没有
师:你觉得它们像什么呢?(生发挥想象力回答,但要说明的是平面图形)
2.引导交流
师:请大家仔细观察这两个图形,它们的什么可能相等?生:面积
师:怎样比较这两个平面图形的面积?谁来说说看。
生:可能说“数方格/折剪拼移转”(如学生讲到数方格,老师要注意引导学生把方格补好)
师:好,现在就请大家拿出手头的图形,同桌协商选用哪种方法,然后分好工,每人完成一个平面图形的操作,然后放在一起验证一下。(同桌操作,教师巡视,并指导。)
3.指导验证。
师:验证下来,发现,这两个平面图形的面积确实相等的同学学举手!
你们组是怎么想的?为什么这么想?指名回答。
学生说想的过程,并投影出示学生的作业纸。(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)
师表扬。
师演示刚才学生说的过程。
师:这样旋转和平移后都变成了什么图形?
生:长方形。
师:变成长方形后面积确实————相等!为什么?
生:长和宽一样,所以面积一样。
(长是5格,宽是4格,它们的面积是相等的,都是20格。)
师再次演示变化过程,提问:在2个图形变化的过程中,他们什么不变?(面积)都把他变成了什么图形的面积?生:长方形。
有没有用“数的方法”?
师小结:刚才我们为了更好的比较两者的面积,运用了解决问题的一个什么策略呢?是的,是把两个未学过的图形(复杂繁琐的)转化成已学过的(简单的)两个面积相同的长方形来比较的,这就是我们今天要学习的解决问题又一个策略——转化。(板书:转化)
4.出示练一练。
师:下面,我们继续看一组图形:出示p72练一练。
生独立完成后,小组交流。(解题关键:平移前后周长不变)
集体交流校对方法,并课件演示。
5.回顾知识,体验转化
(1)师:同学们,其实“转化”的策略并不神秘,在我们以前图形学习中就曾经很多次运用了“转化”的策略,你能回想出哪些呢?
同学们合作交流,将自己思考的内容在组内交流,验证自己的想法正确与否,同时从别人的发言中丰富自己的认识。指名回答,生可能会说:
推导三角形公式时,把三角形转化成平行四边形。
推导梯形时把梯形转化成平行四边形。
推导圆面积时,把圆面积转化成长方形。
在学生说的过程中请学生说说推导的过程,并相应演示推导过程。
……
(2)我们除了在图形变化中运用转化,在计算中也同样适用。计算小数乘法时把小数乘法转化成整数乘法,计算分数除法时把分数除法转化成分数乘法等等。
若学生不能说出算理的转化过程,师先出示1.25*7.8=?1/7除以2/9是多少,让学生在算的过程中再次体会转化的重要性
然后出示试一试:计算1/2+1/4+1/8+1/16
师:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。
(2)相邻的分数是什么关系?(后一个是前一个的1/2)
师我们一起来画图表示看看。师根据题目依次画图。
师:你能运用“转化”的策略来解决这一问题吗?学生看图解答。
指名回答。1-1/16=15/16(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)
比较:� 在以后的学习、生活、工作中碰到问题时,可以积极地使用“转化”策略来解决。
三、拓展运用,提升策略。
1、师:下面,我们就来比一比,赛一赛,看看谁的转化策略用得好?
2、请大家在书上完成练习十四的1,2,3,然后集体校对,进行星级评定(合计5道,五星级评评定)。
第1题:
(1)学生数一数,得出结果。(15场)
(2)交流简便思路,学生最初可能有两种情况。
生1:用“顺加”的方法:8+4+2+1=15场。
生2:用“倒减”的方法:16-1=15场
对于第二种方法,学生可能只是猜测,需要通过举例去证明。
(3)如果有64支球队参加比赛,产生冠军要比赛多少场?
学生独立完成解答,后汇报。
(4)教师讲授:16支球队中只有1支球队是冠军,其他15支球队都要先后被淘汰,所以一共要进行16-1=15(场)比赛。照此类推,64支球队参加比赛,产生冠军要进行64-1=63(场)比赛。
第2题:(课件演示直接校对)追问:怎么想到转化的方法的?
第3题:(重点讲评八卦图)
已知该八卦图的半径是五厘米,求红色部分的周长是多少?
学生解答(思路:转化成2个圆的周长)
四、课堂小结
通过本节课的学习你有什么收获?(“转化”随时随地都在我们身边)在今后的学习、生活中,你愿意运用转化的策略吗?为什么?
生回答出示:
学习数学的过程就是不断转化的过程。
复杂转化为简单,陌生转化为熟悉,
抽象转化为具体,未知转化为已知。
掌握转化的策略,对学好数学至关重要。
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。
用转化的策略解决问题:?----→!
师小结:当然,有解决问题时,要善于从不同的角度灵活地分析问题,这样有利于我们想到合理的转化方法!
五、课堂作业
1、练习十四第3题(1)
2、练习十四第4题:有三堆围棋子,每堆60枚。第一堆黑子与第二堆的白子同样多,第三堆有1/3是白子。这三堆棋子一共有白子多少枚?
六、板书设计:
解决问题的策略——转化
?----→!
s三角形——s平行四边形
s圆形 ——s长方形
小数乘法——整数乘法
分数除法——分数乘法
……
我听了韦老师老师的解决问题的策略----从条件出发这节课,感触颇深。本课书上以小猴摘桃的情境引入新课,但韦主任通过改编题目,改成学生熟悉的学生在跳绳,更贴近学生的生活,引发学生强烈的兴趣。陆老师让学生仔细阅读题目,自己找出已知条件和问题,并引导学生区理解题意,如“以后每天都比前一天多摘5个”,帮助学生用自己的话表达出来。张老师的课件制作精美,讲解的很到位,在弄清条件含义和要求的问题后,一起整理出解决问题的思路,再用列式计算和填表的方法求出问题的答案。王老师先是讲解题目的关键句,“以后每天都比前一天多摘5个”引导学生通过比较列表和列式解决问题的过程,感受到可以用从条件出发思考的策略来解决问题。之后让学生说一说用这种方法解题后有何体会。
后面大家都安排了5个练习题,让学生通过各种形式的练习,用从条件出发思考的策略,理清要求和问题之后再来解决问题。体会到用这种策略解题的。好处。
这节课本是学生熟悉的题目,能在解决问题的同时体会从条件出发是解决问题的策略,体会找到条件,利用条件是解决问题的关键。
教学内容:P63~64例题和试一试、P65“想想做做”
教学目的:
(1)让学生学习有画图和列表的方法收集、整理信息,并在画图和列表的过程中分析数量关系,寻找解决问题的有效方法。
(2)使学生在自主探索合作交流中体验成功的愉悦,进一步树立学习数学的`自信心,发展对数学学习的积极情感,提高主动学习和独立思考的积极性。
教具学具准备:无
教学过程:
一、导入新课
一天,小明妈妈下班回家,正要开门时却发现钥匙掉了,你帮助小明妈妈想想办法,如何把打开?
(学生说出不同的方法)哪些方法可取,比较好?
遇到问题如何解决,就要找到解决问题的策略,今天这节课学习“解决问题的策略”(板书课题)
二、新授
1、出示场景
(1)说一说图中提供了哪些信息。
(2)根据提供信息,你能提出哪些问题?
2、出示问题:
(1)小华买5本需要多少元?
(2)小军用42元可以买多少本?
一、解决问题的策略
二、完成想想做做:
三、整理信息,解决问题
四、应用拓展
1、放学后,我们两个同时从学校出发,分别向东去新华书店,向西去文具店,
问:这道题和例题有什么不同?
你能根据题意自己独立画线段图整理。
展示学生的线段图,并让学生说说自己是怎样想的。
补充合适的。问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。
2、比较两题,找联系。
说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。
什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的速度再算总的路程。……)
五、完成想想做做:(做在作业本上)
1、先画图整理,再解答。
2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。
3、读题后问:这道题和例题有什么联系?你会解答吗?
教学目标:
1、让学生自主经历探索解决问题的策略和方法。
2、培养学生的思维能力,训练学生有合理地分析问题,提高学生解决问题的能力。
3、明确小括号的作用。
教学过程:
活动一:出示情景图,提出问题
师:你可以提出什么数学问题?
生互相交流。
师抽生交流并板演:犁糕一共可以装多少包?
活动二:解决问题
师:你会解决这个问题吗?
[生尝试解决,并交流]
师:谁愿意起来交流一下你的做法?
全班交流,展示不同的写法。
生1:520÷4=130(包)
320÷4=80(包)
138+80=210(包)
生2:(520+320)÷4=
师:你能说一说每一步计算的含义吗?
师:你能出有括号的`先加再除的混合的运算顺序吗?
生答。
师:请同学们解决下面的问题。
360÷(2X3)380÷(132-127)
活动三:练一练
第4、5、10题:要放手让学生独立地完成。交流时注重让学生说清分析思路和策略,以此提高学生解决问题的能力。
第一课时
教学目标:
1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学重点:会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息。
教学难点:会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
教学资源:实物投影仪。
教学过程:
一、游戏导入:
1、同学们,上课之前我们来做个游戏,(请两个学生从两边向同一个方向走,直到相遇)问:同学们,你们看到了什么?(再请这两个同学从同一个地点朝相反方向走)问:同学们,你们看到了什么?
2、揭题:像这类问题我们在生活中经常会遇到。今天这节课我们就来学习解决问题的策略。
二、新知探究
1、出示题目:指名读题目,并要求说说知道了些什么,还想到些什么?
2、引导学生认识到,当题目中的信息比较多时,可以用适当的方法把题目中的条件和问题进行整理,这样有利于更清楚地分析数量关系,确定解题思路。
3、学生尝试整理信息。
你能将题目中的这些信息整理出来吗?你打算用什么方法?(学生讨论)
4、汇报交流:1、列表整理;2、画图整理。
5、学生整理,教师巡视。
三、.师生交流
1、分别展示学生的整理方法,并让学生说说自己的想法。
2、教师小结:列表和画线段图都是解决问题的策略,根据题目的内容我们可以选择合适的方法,像这样的相遇问题用画图的方法比较合适,它不仅可以从图中看出小明和小芳各自行走的速度和时间,而且可以从图中直观地分析出数量之间的关系。新 课 标第一 网
3、解答:根据整理的结果,可以怎样列式计算。
4、比较两种解法有什么联系?
四、试一试。
1、出示第1题:让学生先独立画图整理条件和问题,再独立进行解答。
2、出示第2题:让学生先独立画图整理条件和问题并进行解答,
再评议订正并说说画图整理的方法有什么好处?
五、巩固反思。
1、做“想想做做”的第1题。
(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。
2、做“想想做做”的第2题。
(1)先帮助学生理解183元是购买8瓶墨水和9枝钢笔的钱,要从183元中去掉8瓶墨水的钱就是9枝钢笔的钱。
(2)再让学生独立解答,最后交流反馈。
3、做“想想做做”的第3题。
(1)先引导学生画一个椭圆形跑道直观图,帮助学生理解跑道长应等于小张和小李所跑的路程之和。再让学生尝试画出线段图并解答。
五、总结质疑。
1、这堂课你有些什么收获?2、作业:想想做做第3~5题。
解决问题的策略
第二课时
教学目标:
1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学重点、难点:
会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,并能正确解答。
教学资源:小黑板等。
教学过程:
一、复习导入:
1、同学们,还记得上课我们学习了什么知识吗?
2、揭题:今天这节课我们继续来学习解决问题的策略。
二、新知探究
1、出示题目:指名读题目,并要求说说知道了些什么。
2、讨论:打算用怎样的策略去解决这个问题?
3、学生尝试整理信息,教师巡视指导。
4、汇报交流:1、列表整理;2、画图整理。
分别将两种方法展示在黑板上,然后提醒学生画图时线段长度的比例应大致符合实际情况,并标出相应的已知条件;列表整理时提醒学生可以通过简单的计算,把扩建后的操场的长与宽直接填在表中,以有利于更好地把握主要数量关系。
5、学生纠正。
6、解答:通过刚才的整理,你现在能快速、准确地解答这道题目了吗?(学生独立解答)
7、反馈交流答案。
三、试一试
1、出示题目,指名读题后讨论用怎样的方法来解决?为什么?
2、引导学生说出用画出示意图的方法。然后指导学生画出示意图,再让学生结合示意图独立解答。
3、反馈交流答案。
四、巩固应用
1、做“想想做做”的第1题。
(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。
2、做“想想做做”的第2题。
(1)先让学生画出长增加6米后的示意图,理解此时面积增加了48平方米,而48正好是原长方形的宽余的乘积,由此可以求出原长方形的宽,再用同样的方法求出长方形的长,最后计算出原来实验田的面积。
(2)再让学生独立解答,最后交流反馈。
3、做“想想做做”的第3题。
(1)先引导学生理解红花与谎话的摆法,四条边共可摆36盆,但由于4个顶点处被多计算了一次,所以红花的盆数是32盆。同样的道理,可以算出黄花的盆数是40盆。
(2)学生独立解答并交流答案。
五、总结质疑。
1、这堂课你有些什么收获?2、作业:想想做做第1~3题。
解决问题的策略
第三课时
教学内容
第103页例题通过场景图提供相关信息,启发学生根据解决问题需要采用不同的策略收集和整理信息,在此基础上用不同方法解决问题。
教学目的与要求
教学目标
1、使学生在解决简单实际问题过程中,体会用画图和列表方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。
2、是学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学自信心。
教学重点与难点
学习用画线段图和列表方法解决有关行程计算的实际问题。
教具学具
投影仪、小黑板
教学过程
一、创设情境
投影出示p103例题
小组合作,讨论、交流
联系现实场景,说说能知道些什么?还能想到些什么?
二、探索研究
1、小组探讨:怎样用适当的方法把题中的条件和问题进行整理,更有利于分析数量关系,确定解体思路?教师巡视,给与恰当指导。
2、教师强调画线段图的方法
(1)、让线段图正确反映小发明家、学校、小芳家的相对位置关系。
(2)、能在图中看出小明、效仿各自行走的速度和时间以及所需要解决的问题。
(3)、能从图中直观分析数量之间的关系。
3、小组汇报整理的方法,投影出示:
(1)、画图整理:
(2)、列表整理
小明家到学校 每分走70米 走了4分
小芳家到学校 每分走60米 走了4分
4、根据整理结果,小组交流、探讨:
应先算什么、再算什么,教师鼓励学生富有个性解决问题。
学生汇报,教师投影展示:
70 4+60 4 (70+60) 4
=280+240 =130 4
=520(米) =520(米)
答:他们两家相距520米。
5、比一比,两种解法有什么联系?
6、小结,通过例题的学习,你有哪些收获?
三、拓展延伸:
1、完成“试一试”
第1题,让学生根据题意先画图整理条件和问题,再独立进行解答。
第2题,让学生在列表整理的基础上,指导学生分析数量关系,明确解题思路。
2、完成“想想做做”中题目。
第2题,教师帮助学生理解题目意思,再引导学生通过思考和计算,填出括号里的数字。
第3题,教师先画一个椭圆形跑道直观图,帮助学生理解“跑道长应等于小张和小李所跑的路程之和”。
学生尝试画线段图表示题中的数量关系。
第4题,重点引导学生先列表整理条件再独立解答。
第5题,第(2)小题根据题意,师生合作化出相应线段图,然后再解答。
四、作业
想想做做1、5题。
解决问题的策略
第四课时
教学内容
第106页例题主要通过解决有关面积计算的问题,让学生自主运用画图或列表的策略解决问题,并体会相同的策略可以有不同操作形式。
教学目的与要求
1、使学生会通过画线段图,直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学重点与难点
重点学习用画直观示意图和列表的方法解决有关面积计算的实际问题。
教具学具
投影仪、小黑板
教学过程
一、创设情境
投影例题:学生读题,讨论用怎样的策略去解决问题。
二、探索研究:
小组合作,探讨、交流。
教师提示:画出的操场示意图中线段长度的比例大致符合实际情况,在图中应标出相应的已知条件。
1、小组汇报解决策略,教师投影展示。
列表:
长 宽 面积
原来 50米 40米 ?平方米
现在 ?米 ?米 ?平方米
画图:如图书p106
2、想想,要求操场的面积增加了多少平方米,可以先算什么,再算什么?再小组里说说自己的想法再解答。
板书:(50+10) (40+8) 50 40
=60 48 =(平方米)
=2880(平方米)
2880-=880(平方米)
或50 8+(40+8 10)
=400+480
=880(平方米)
答:操场的面积增加了880平方米
3、小结:通过例题的学习你有哪些收获?
三、拓展应用:
1、完成“试一试”
指导学生根据题意画出直观示意图,启发学生把图中“小路”适当分成几部分,分别算出面积后再求和;也可启发学生用外围大正方形面积减去里面的草坪面积,从而求得小路面积。
2、完成“想想做做”
第2题,让学生画出长增加6米后的示意图,理解面积增加了48平方米,而48正好是原长方形的宽与6的乘积,由此可以求出原长方形试验田的宽。再用同样的方法求出长方形试验田的长,最后计算出原来试验田的面积。
第3题,分别引导学生理解红花与黄花的摆法,红花应沿里面的正方形边摆,每边能摆9盆,四条边共可摆36盆,但由于4个顶点处各被多计算了一次,所以红花的盆数是32。同样的道理,可计算处黄花的盆数是40,红花和黄花一共要放72盆。
四、作业
想想做做第1题。
教学内容:五、六年级教材中《解决问题的策略》
教学目标:
1.能根据解决问题的需要,恰当选用不同的策略进行思考;能根据具体的问题灵活确定解题思路,合理选择解题方法,有效解决问题。
2.在运用策略解决问题的过程中进行合理灵活的思考,并清晰地表述自己的想法;具有主动运用策略解决问题的意识,体验解决问题策略的多样性,提升对解题策略价值的认识。
教学过程:
一、理一理
谈话:人们在解决问题时,常常需要使用一定的策略,想一想,我们以前学习过的解决问题的策略有哪些?
1.列表。
用列表的方法收集、整理信息,便于分析数量关系。
2.画图。
在解决问题的过程中,有时可以用画图的方法整理相关信息,如:可以用画“示意图”的方法解决有关面积计算的实际问题;可以用画“线段图”的方法解决有关行程问题的实际问题。
3.在具体的问题情境下,还可以用一一列举、还原、替换、假设、转化等策略寻求解决问题的思路。
二、练一练
1.王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?
学生用一一列举的方法找出不同的围法,然后交流,再要求学生算出每个围成的长方形的面积,说说自己的发现。
2.小刚原来有一些画片,他拿出画片的一半送给弟弟,后来又买了18张,这时共有47张画片。他原来有画片多少张?
学生用不同的方法来解决这一题,然后交流。
3.王老师买了8个网球和1个足球,正好用去360元。足球的单价是网球的4倍,足球和网球的单价各是多少元?
学生用替换的策略解决问题,然后交流解题思路,教师及时小结。
4.全班42人去公园划船,一共租用了10只船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?
学生用假设法来解决,然后交流解题思路,教师及时小结。
5.超市里有白糖和红糖480千克,红糖的质量是白糖的三分之五,红糖有多少千克?
学生用“转化”的策略解决这一题,然后交流不同的解题思路,教师及时小结。
三、补充练习
1.小明有5元和2元两种人民币若干张,他要拿37元,有多少种不同的拿法?
2.旅游团23人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有多少种不同的安排?
3.小军收集了一些画片,他拿出画片的一半还多1张送给小军,自己还剩25张。小军原来有多少张画片?
4.在2个同样的大盒和5个同样的小盒里装满球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?
5.食堂运来一批煤,第一次用去总数的2/9,第二次用去1000千克,这时用去的煤与剩下的煤同样多。这批煤原有多少千克?
6.一套西服840元,其中裤子的价格是上衣的2/5。上衣比裤子贵多少元?
课后反思:
本课时内容与后一课时内容合并为一课时进行了复习。从复习情况看,大部分学生还是掌握了以前学习的这些内容。难度不大的有关找规律或是用假设、替换等策略解决一些简单的实际问题时,学生也都能正确解答。在运用假设法或替换法解决实际问题后,检验也很重要,课上结合一些实际问题,我请学生在列式计算后再进行检验,看看是否符合已知信息。
和沈老师一样,感到学生之间存在较大的差异,复习中学习困难生就感到困难重重,体验不到学习的快乐。
课后反思:
总的来说,大部分学生完成的不错,补充习题的第3题和第4题学生错的比较多,可以理解,在之前学习的时候,第3小题也是学生有错误的。而第4小题主要是让学生知道用替换的策略解决问题时,分倍数和差数关系,题中如果告诉我们的是倍数关系,则总量是不变的,如果是差数关系,则总量要发生变化。另外对于一些有困难的学生,有时候判断不出用替换还是假设的策略解决问题时,则可以让学生用列方程来解答。而且在练习的过程中也有不少学生采用了列方程的方法,在没有明确用哪种方法解答时,这也未尝不可。
教学内容
苏教版数学四年级(上册)第65-67页。
教学目标
1、在解决简单的实际问题的过程中,初步体会用列表、摘录的方法整理相关信息的作用,学会用列表或摘录的方法整理简单的实际问题所提供的信息。
2、进一步积累解决问题的经验,体悟解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学过程
一、呈现问题,感受整理信息的必要性
出示情景图,提问:同学们仔细观察这幅图,并说说从图中你能知道些什么信息?
学生充分交流。
结合学生的“无序”交流,教师组织学生根据所获得的信息提出问题。
教师板书:
(1)小华用去多少元?
(2)小军能买多少元?
二、解决问题,自主探究整理信息的方法
1、提问:要解答“小华用去多少元”,需要的条件是什么?
指名用简洁的语言陈述。
学生回答后,让学生将发言的内容,即所要解决的问题和所需要的条件整理出来。
18元买3本,()元买5
学生的整理方案可能有:
3本要18元,小华买15本
小明买3本用去18元,
小华买5本用去()元
教师组织学生观察,比较,评说,在交流的基础上,引导学生列表整理。
教师在小黑板上绘出空表格,学生完成填空:
小明3本18元
小华5本()元
小明3本18元
小华
小明
小华
提问:下面我们来解决问题,你是看原先的购物图呢,还是看你整理的内容?为什么?
学生小组交流后在全班交流,然后独立解答。
指名汇报,教师板书:
18÷3=6(元)
6×5=30(元)
再让学生口述算式每一步表示的意义。
2、谈话:再来看问题2,大家会整理信息吗?
学生自主整理,展示学生整理的内容。
师生评议学生的整理结果。
指名板演解答,其余自练。
评析板演的解法,口述算式每一步表示的意义。
引导比较,强化整理信息的方法。
讨论、交流:
A把刚才解决的两个问题联系起来比较,在计算方法上有什么相同的地方,有什么不同的地方?
B把解决两个问题的数据合起来看,你发现了什么?
结合学生的回答,教师引导学生发现:本数在变化,钱数也在变化;本数与钱数发生了相对应的变化,不变的是——每本的价钱。
3、引导学生反思:在解决这两个问题的过程中,你感受最深的是什么?
三、巩固应用,提高整理信息的自觉性
1、完成“想想做做”第1题。
学生根据题目中的条件和问题列表整理,教师巡视,对有困难的少数学生作个别指导。
展示学生的整理结果。
提问:通过整理,解题的感觉如何?
学生列式解答,教师指名板演,
师生评析板演。
2、完成“想想做做”第2题。
学生独立整理、解答,指名板演。
提问:大家觉得在这里解决问题要注意什么?
四、揭示课题,提升对整理信息意义的认识
谈话:回顾一下,今天的数学课我们探讨了——列表整理,摘录整理。这些都是解决问题的策略。(板书课题)
今天所学习的。列表、摘录问题信息等策略,都能使信息得到简明的表达,方便我们理解,有助于顺利解题。下一节课我们还要继续探讨解决问题的其他策略。
五、课堂作业
完成“想想做做”第3、4题。
教后反思:
教材中的例题及练习是我们比较熟悉的、以往被称之为“归一”、“归总”的内容,但在苏教版教材中,这部分内容的教学定位已发生了变化。在本课的教学过程中,解决问题不是目的,而是在解决问题的过程中,让学生学会用列表的方法来整理问题信息,体验解决问题中的思考策略。教学时采用了由扶到放的教学策略,通过引导,放手让学生用多种方式来摘录条件和问题,然后让学生来评论、比较、鉴别,从而认可最简洁的一种,形成共识;接着教师绘制表格,让学生填写。这里一方面相信和尊重学生,任由学生来摘录和整理信息;另一方面又不失指导点拨的教学主导作用,引导学生走向规范简洁的列表整理。
一、教学目标分析
一一列举是把事情发生的各种可能逐个罗列,并用某种形式进行整理,从而找到问题的答案。本课的教学目标为:进一步加深对现实问题中基本数量关系的理解,增强分析问题的有序性;进一步体会解决问题策略的多样化,增强灵活选用策略的能力。在落实教学目标方面要避免以下问题。
不重视一一列举的有序性。某些教师认为苏教版教材在教学一一列举策略之前,每个学期都或多或少地渗透了这个策略,只是没有提炼出策略名称而已。特别是四年级下册学习搭配的规律时,学生已经会不重复、不遗漏地进行搭配,因此本课无须强调有序。苏教版关于“解决问题的策略”的编排特点是,先将要学习的策略渗透到各部分内容之中,然后从四年级上册开始安排“解决问题的策略”单元,集中教学解决问题的策略,促进学生掌握一些基本的策略,提高学生解决问题的能力。这就要求教师在教学时正确处理好策略的分散教学和集中教学的关系,唤醒学生已有的一一列举经验,引导学生探究一一列举策略的内涵,学会有序思考。
呆板、僵化地理解一一列举策略。教材中的一一列举策略主要是借助表格呈现的,因此部分教师错误地认为一一列举策略就是用表格呈现所有可能的策略。事实上,列表策略强调的是用表格呈现信息,一一列举策略强调的是列出所有的可能情况。用表格列出所有可能的情况只是一一列举策略的一种具体表现形式,这种形式能较清晰地列出所有的可能,但并不是唯一的形式。教师可引导学生在掌握用列表法进行一一列举的基础上思考不用表格如何做到一一列举。
孤立地学习某种策略。苏教版教材从四年级上册开始组织学生集中学习列表、画图、一一列举、倒推、假设、替换、转化等策略。教学时,教师不能孤立地教学其中的某种策略,而应了解编者的意图,有机地将前后策略联系起来,提高策略教学的有效性。
二、教学过程
(一)感受情境,唤醒记忆
1.以“宝贝向前冲”为情境,引出3道不同年级的数学题。
(1)把7个苹果分成2堆,有哪几种分法?
(2)有3个木偶娃娃和2顶帽子,最多有多少种不同的搭配方法?
(3)用小数点和2、3、4最多可以组成几个不同的两位小数?
2.引导学生找这3道题的解法的共同特点,并想一想在解题时要注意什么。(要注意有序性,做到不重复、不遗漏。)
3.揭题。
【用学生已会解决的不同层次的`3个实际问题为教学引子,唤醒学生关于有序的经验,并在反思解题的共同特点和注意点时,让学生感知本课教学的重点——有序思考。这样的设计旨在梳理分散在各个年级的与一一列举有关的内容。】
(二)整理信息,感悟策略
例l:王大叔用18根l米长的栅栏围一个长方形羊圈,有多少种不同的围法?
1.整理信息。提问:从题目中能获得哪些数学信息?
2.出示表格。小组先动手围一围,再将不同的围法填入表格(表格主要包含长、宽、周长、面积等项目)。
3.汇报结果。交流所填表格,并思考为什么会出现重复和遗漏的现象。
4.整理表格。让学生结合具体的无序的表格谈谈怎样使之有序。
5.探寻规律。引导学生结合有序排列的表格,探寻表格中隐含的数学规律,得出:①周长不变。不管怎样 围,周长都是18米。②长、宽和面积都在变。长由8米变到5米,宽由1米变到4米,相应的面积由8平方米变到20平方米。③长与宽的差越小,长方形的面积就越大。④从充分利用资源的角度考虑,应选择面积最大的围法。
6.回顾反思。引导学生回顾帮王大叔解决围羊圈问题的过程,思考有哪些收获、有哪些要注意的事项。教师归纳;用一一列举的策略能列出解决问题的所有可能策略;有序思考不仅能保证列举时不重复、不遗漏,还有助于发现规律。
【本环节旨在促进学生用表格进行一一列举,并借助表格理解基本的数量关系、发现数量的变化趋势。教学时要突显有序思考,可分四个层次展开:第一层,整理信息。为了防止学生囫囵吞枣地理解题意,可先让学生读题后说一说自己的理解,再相互交流,认识基本的数量关系。第二层,无序列举。可故意将表格多设计几行,设置陷阱,“诱使”学生出现重复或遗漏的情况,还可在学生汇报时有意展示有重复、遗漏现象的表格,让学生意识到无序会导致遗漏或重复,引发学生的思考。第三层,有序列举。引导学生思考怎样才能做到不重复、不遗漏,让学生认识到列举时要有条理、有序,体验有序的重要性,增强思维的条理性和严密性。第四层,反思提升。在回顾解决;问题的过程中, 反思、感受一一列举的特点和价值。】
例2:订阅下面的杂志(图中杂志为《科学世界》、《数学乐园》、《七彩文学》,图略),最少订阅1种,最多订阅3种,有多少种不同的订阅方法?
1.学生独立整理信息,理解“最少订阅1种,最多订阅3种”的意思。
2.引导学生按独立思考——同桌交流——全班交流的步骤列出所有可能的订阅情况,重点交流订阅2种的可能情况,突出有序思考。
3.引导学生思考“如果不列表,还可以怎样列举所有可能的订阅情况”,并尝试用字母、数字、符号或其他形式表示这3种杂志,列出所有可能的订阅情况。
4.引导学生比较哪种方法简便,并说说理由。
【本环节旨在让学生进一步体会解决问题策略的多样性,增强灵活选用策略的能力。让学生探索不列表时怎样列举所有可能的订阅情况,能促使学生多视角、多形式地解决问题,有效预防学生把解决具体问题作为学习目标,或片面地将一一列举策略理解为通过表格列举的策略,提高他们灵活选用策略的能力。】
(三)解决问题,巩固策略
1.独立完成教材第64页“练一练”:“一张靶纸共3圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中2次,可能得到多少环?”
2.独立思考:把“小华投中2次”改为“小华投了2次”,结果怎样?
3.说说生活中哪些地方用到了一一列举策略,具体是如何应用的。
【本环节旨在让学生独立应用一一列举策略解决实际问题,进一步内化一一列举策略。】
教材分析
本课时学习的是用替换的策略解决实际问题。教学例题是要让学生在解决问题的过程中初步体会替换,发展解题策略。解题的关键就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把学生潜在的、无意识的方法唤醒,使隐含的思想清晰起来。
学情分析本节课的学习者特征分析主要是根据教师平时对学生的了解和学生前面的学习表现而做出的。
?学生是合肥市区六年级的学生。
?学生有良好的小组合作进行探究的学习习惯。
?学生已经掌握了一些解决问题的策略。
教学目标一、知识目标:
使学生初步学会用替换的策略理解题意、分析数量关系,并能根据题目的特点确定合理的解题步骤。
二、能力目标:
使学学生在对解决实际问题过程的不断反思中,感受替换策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
三、情感目标:
使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重、难点1、使学生初步学会用替换的'策略去分析数量关系,并能根据问题的特点确定合理的解题步骤和选择相应的解题策略。
2、在解决实际问题过程中,感受替换策略对于特定问题的价值,进一步发展分析、综合和简单推理能力。
教学具准备多媒体课件
教学程序教 学 内 容教学活动学习方式教学策略
一、复习
引新。1、提问:
同学们我们学过哪些解决问题的策略?
(列表、画图、列举还原)、
2、揭示课题
今天,我们继续学习解决问题的策略的知识。组织学生回忆旧知、交流、汇报。以旧引新复习引新
二 、探究
新知
(一)用替换策略解决倍数关系问题
1、出示例题(图文结合)
小明把720毫升果汁倒入6个小杯和1个大杯,正好都可以倒满。小杯的容量是大杯的1/3。大杯和小杯的容量各是多少毫升?
2、理解题意
(1)你从题中获得哪些信息?要我们解决什么问题?
根据回答完成板书:
小杯6个
小杯的容量 720 ml
是大杯的1/3,
大杯1个
�
(2)然后根据图再列式计算。
4、汇报交流
请个别学生回答解题的方法
生A、大杯换小杯
1个大杯换成3个小杯
13=3(个)
6+3=9(个)
7209=80(毫升)
803=240(毫升)
生B、大杯换小杯
6个小杯换成2个大杯
63=2(个)
2+1=3(个)
7203=240 (毫升)
2401/3=80 (毫升)
5、检验结果
怎样知道我们计算得对不对呢?
我们要来检验一下。
这题怎样检验?
生: 806=480(毫升)
240+480=720(毫升)
符合果汁有720毫升这条件就行了吗?
生:80240=1/3 或是
24080=3
还要符合小杯的容量是大杯的1/3这个重要的条件才行。
都符合了题目中的条件才说明我们做对。
请大家写上答语。
6、比较方法,提升策略
在刚才的探究中,我们知道了可以把小杯替换成大杯,也可以把大杯替换成小杯,在这个过程中怎样来替换,又如何来解决这个问题呢?
完成板书:
小杯6个 6+3=9
1/3 720毫升
大杯1个 2+1=3
仔细观察这两种方法,它们的共同点是什么?
都是把两种不同容量的杯子换成同一种容量的杯子,来计算的。
7、小结方法,揭示课题
也就是把两种不同的量换成同一种量。
这就是我们今天研究的解决问题的策略替换策略。
(二)用替换策略解决相差关系问题
1、理解题意
出示变式题(图文结合)
小明把720毫升果汁倒入6个小杯和1个大杯,正好都可以倒满。大杯的容量比小杯多20毫升。大杯和小杯的容量各是多少毫升?
还是刚才那道题吗?
与刚才的题目有什么不同?
已知的条件和要求的问题各是什么?
关键句是什么?
大杯的容量比小杯多20毫升
还可以怎么说?
小杯的容量比大杯少20毫升
你会解答吗?
2、自主尝试
请自己试一试,用我们学习解答例题的方法来解决这个问题。
学生自主画图列式计算
2、交流方法
生C、大杯换小杯
1个大杯换成1个小杯
720-20=700(毫升)
7007=100(毫升)
100+20=120(毫升)
小杯6个 6+1=7 720-20
多20 ml
大杯1个
生D、大杯换小杯
6个小杯换成6个大杯
206=120 (毫升)
720+120=840 (毫升)
8407=120(毫升)
120-20=100 (毫升)
小杯6个 6+1=7 720-20
多20 ml
大杯1个 6+1=7 720+120
4、检验结果
互相检验结果。
生: 1006=600(毫升)
600+120=720(毫升)
120-100=20 (毫升)
符合已知信息我们就做对了。
4、小结变式题思路
仔细观察,它们的共同点是什么?
也是把两种不同的量通过替换变成同一种量,这样使复杂的问题变得简单。
组织学生画图、列式解答、研究方法,使学生充分感知替换策略
引导学生利用两种量之间的关系,想到不同的解决方法,同时发现它们共同的特征。组织学生讨论,再利用多媒体直观演示,丰富学生的感知。
组织学生自己尝试根据两种量之间的关系,继续运用替换策略解决相差问题。运用多媒体直观演示,解决教学中的疑难问题,帮助学生理解替换中,总量变化的疑惑点。
引导学生比较发现替换策略能解决的两种不同情况的问题的特征。充分体会替换策略的价值。
通过自主研究,汇报交流,使学生的语言、思维得到发展,学生通过画图计算感知替换策略。
观察比较、小组讨论、合作交流,引导学生得出结论。
通过尝试算法,汇报交流,进一步理解替换策略,体验它的实用性。
通过比较集体研讨发现问题的不同类型的特征。
画图汇报交流,培养学生自主探究知识的能力。
通过相互评价,激发学生的学习热情
合作学习,共同研究策略。在合作学习中,相互取长补短,增强合作意识。
放手让学生自主研究替换策略解决相差问题,充分体验策略的真正的价值。
引导观察比较,归纳总结解决问题的方法。
(三)、比较例题与变式题
例题与变式题都是运用替换策略解决的,它们有什么异同?
小组讨论,集体交流
这两道题目我们都是用替换的策略来解决的。
倍数关系,杯子个数变化,但总量没有变。
相差关系,杯子的个数没有变,而总量却变化了。
根据学生回答完成板书。
三、运用新知,解决问题。1、纸盒问题
2个大盒,5个小盒装满球,正好100个,一个大盒比一个小盒多装8个,一个大盒装多少个?一个小盒装多少个?
(1)先画出替换示意图
(2)再交流自己是怎样来解答的
2、门票问题
六(3)班43名同学和王老师、杨老师一起去秋游,买门票一共用去470 元,成人票的价格是学生票的2倍,每张成人票和学生票各多少元?
3、练习十七的第1题
钢笔和铅笔的问题
4、机动练习
小明原来有一些邮票,今年又收集了20张。送给小军30张后,还剩52张。小明原来有多少张邮票?
5、生活实例让学生联系生活实际,独立分析习题,运用所学知识解决实际问题。独立完成,交流反馈。通过解决实际问题,深化新知,充分感受数学知识与生活实际的紧密联系。
五、板书设计解决问题的策略 替换
小杯 6个 6+3=9(个)720ml
小杯是大杯的1/3 变了 没变
大杯 1个 2+1=3 (个)720ml
小杯 6个 6+1=7 (个)720-20
大杯比小杯多20ml 没变 变了
大杯 1个 6+1=7 (个)720+120
教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学准备:
课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。
课前给学生合作要求纸。正面题目1和要求,反面自编题目。
事先写好课题:解决问题的策略
打开课件
教学过程:
一、创设情景导入:
有谁带了钢笔吗?(学生举手)
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)
(严肃,让学生觉得真换)
怎么啦?(学生说说)
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)
用铅笔换钢笔依 据
板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔 ( 价格相当)
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)
紧接板书:价格相当
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据
师:闹了半天,你当老师来做生意了吧。不,可别小看这个"换"字,交换的换,替换的换,就是这个换字,它确是蕴涵着一种的数学方法。而且这个方法已经有悠久的历史了。早在1800年前的三国时代就有位7岁的孩子使用了这种换的方法,被传为一段千古佳话。你们知道他是谁吗?
二、温故知新:
课件打开到曹冲称象图片。
对,课前大家已经熟悉了这个故事。那谁能告诉我,曹冲是怎么解决称大象体重这个难题的呢?
(他用什么替换了什么?)
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:一堆石头---------替换----------一头大象 ( 重量相同)
曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。
板书:添上----替换两字
三、协作创新
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)
赤壁大战,东吴向前方军营增派105名援军。如果用10艘走舸和1艘楼船来运,一次就可以运完。每条走舸乘坐的士兵人数是楼船上士兵人数的1/5。 那每艘走舸装了多少士兵,楼船上又装了多少士兵呢?
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1 用什么替换什么? (把题目中替换的双方圈一圈)
2 替换的依据是什么?(在题目关键句的下面画一画)
3 替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)
小组交流:
知道怎么替换了的同学请举手
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1 替换有什么好处?
2 你替换的方法和其他同学完全一样吗?
结合课件画面讲解,板书
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)
课件展示:
替换前
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)
替换后
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)
让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
东吴又准备用船和马车同时向军营输送粮草,已知每条运粮船比每辆马车能多运15袋粮食,2条运粮船和5辆马车水陆并进,刚好能把100袋粮食一次运到军营,每条运粮船和每辆马车各运了多少袋粮食?
这个问题还能用替换的策略解决吗?
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成
让一学生上黑板进行板演(力求作出示意图)。
全班交流
引导学生把四大名著换成三国演义
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据 5角硬币 1元硬币 储蓄罐 三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
教学内容:五上第63~64页的例1、例2和练一练。教学目标:1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。3、增强解决问题的策略意识,提高解决问题的实际能力。教学重点:能对信息进行用“一一列举”的策略解决实际问题。教学难点:能有条理的一一列举,并进行分析教学准备:教学过程:一、创设情景,体验列举1、创设情境,回忆策略谈话:老师先来和大家玩个游戏,怎么样?看,这是什么?(扑克牌)你们知道一副扑克牌有几种不同的花色吗?(四种)老师从中任意抽出一张,猜一猜有多少种不同的结果?(四种)是哪四种呢?(草花,黑桃,红心,方块)刚才同学们将这些花色一个一个列举了出来(板书:一一列举),“一一列举”也是我们解决数学问题时经常要用到的一种策略。今天我们一起学习这种策略解决新的问题问题的策略”(板书课题)。2、谈话:在四年级我们曾经两次学到过解决问题的策略,还记得“策略”是什么意思吗?(方法)那么你们还记得我们曾经学过哪些策略吗?(画图,列表)你们说到的列表、画图这两种策略都是用来整理问题中的信息的,便于我们分析数量关系,最后还是通过列式计算解决问题。这节课我们学习的策略则不然,运用这种策略就能找到问题的答案,不需要在列式计算。这就是这节课我们要学习的用一一列举的策略解决问题。二、自主探究,运用列举1、引发列举需要。(师:还记得上学期我们游玩了常州恐龙园,还想出去去公元玩吗?下面我们就一起来看一看三个好朋友是怎么玩的。)小红、小明和小丽三个好朋友星期天到公园玩,一进公园,他们就遇到问题:公园里工人师傅用18根1米长的栅栏围成一个长方形花圃的景点。供游客们休闲和拍照。有多少种不同的围法?师:题目给我们提供了哪些信息?师: 18根1米长的栅栏围成的长方形,它的周长是多少?师:你们觉得工人师傅会有多少种不同的围法?拿出你们手上的牙签,每根牙签代替一根1米长的栅栏,动手围围看。四人小组合作,教师巡视。指名说说他们围成了几种不同的长方形。师:究竟工人师傅有多少种不同的围法?老师现在也不知道。我们在用牙签摆的时候,前几种还能知道是怎么围得,围着围着就记不清这种方法我刚才有没有围过?还有什么方法是我没有围得?容易产生重复和遗漏。如果采用今天我们所要学习的一一列举的策略来解决问题,这样的问题就不会出现了,这种方法神奇吧,想不想学习?2、师:请你想一想,要确定围成一个什么样的长方形,主要确定长方形的什么?(长和宽)板书长/米 宽/米 谈话:在长方形的长后面画一道斜线,并写上“米“字,这是一种新的通用的写法,表示长方形的长是以米作单位的。你们也画一张这样的表。表格画好了,我们想一想,题目中对长和宽还有什么要求?(长和宽的和是9米)让学生试着完成表格。3、找学生填写的表格进行有序和无序的对比,强调有序的好处是不重复、不遗漏。师:如何能一个不落地将所有的围法都找出来?你们觉得可以从几开始考虑?学生各自列表后展示如下两张表: 长方形的长/米8765长方形的宽/米1234 长方形的长/米87654321长方形的宽/米12345678提问:这两张表有什么相同的地方和不同的地方?要研究有多少种围法,� 然后把第二张表中的后4栏擦掉。(3)师:一共列举出多少种围法?师:比较学生两种围法哪种好? 师:用表格列举与摆小棒相比有什么好处?生:不重复,不遗漏。 板书: 不重复,不遗漏谈话:像这样把事件发生的可能性有条理地一一列举出来,从而找到问题的答案,这种策略叫做列举。在列举的时候我们要按照一定的顺序列举,这样答案才能不重复、不遗漏。3、反思列举方法(1)观察这张表格,你有什么新的发现?[小组里交流](2)师:如果你是工人师傅你会选择那种围法? 教师说明:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。三、循序渐进,深入问题1、出示题目:小红和小明、小丽想订阅下面的杂志,最少订阅1本,最多订阅3本。有多少种订阅方法?2、一一列举:师:你们打算用什么策略解决这个问题?师:“最少订阅1本,最多订阅3本”是什么意思? (指名回答。可以订阅1本,可以订阅2本,还可以订阅3本)师:分步出示表头和三类情况。(1)列举时可以用老师提供的表格,在表格里打钩。订阅方法只订一本订2本订3本《科学世界》《七彩文学》《数学乐园》指名到实物展示台来完成表格,集体订正。师:怎么从这张表中看出一共有多少种不同的围法?怎么看?(竖着看,一列就是一种订阅方法)师:通过一一列举,不但能看出共有多少种不同的订法,而且还能看出每种订法分别订的什么书。要得到全部答案,你觉得我们需要注意些什么?(学生思考,引导他们说出:要有序,不重复,不遗漏)四、拓展应用,发展列举1、飞镖游戏:师:“每人投中两次”是什么意思。师:按照顺序列举,一共有多少种不同的环数?投中的圈只投中同一圈投中两个圈中10环中8环中6环2、观看表演:师:玩过飞镖游戏,精彩的动物表演马上就要开始来! 师:已经表演了几场:8:00、8:50、9:40和10:30师:现在是11:15,我们还能赶上下一场表演开始吗?你是怎么知道的?师:下面哪个时刻正好是一场表演的开始时刻?出示:13:00 14:30 15:30 16:00师:你能按照每间隔50分钟再一一列举出下面的表演时刻,然后再判断。3、公园门口有地铁和公共汽车,公交车每隔5分钟发一辆车,地铁每隔7分钟发一辆车,16:00两车同时到站,请问下一次两车同时到站是几时几分?五、总结延伸,发展列举通过今天这节课的学习,你有什么收获和体会?
对例题的想法。例题难度不高,小明和小芳同时从家里出发走向学校(如图,)经过4分后两人在校门口相遇。他们两家相距多少米。
这道例题并不能体现出画图这一策略在行程问题中的价值,因为许多学生根据以前的经验就可以轻松解决。在选择解决问题的策略时,几乎所有的学生都是采用列表这一策略的。有许多学生告诉我,列表这一策略其实根本也用不上,因为他们很容易就抓住了题目中的数量关系。所以,在讲解这道例题时,我把着力点放在了指导学生画图上。指导学生抓住画图的三要素:方向,条件,问题。数量关系倒是很简单的两三句话带过了。
学生对画线段图来表述行程问题这一方法不感兴趣,我认为是有原因的。第一,不习惯,虽然以前也接触过线段图,要画好线段图也是很不容易的,所以,学生更愿意选择列表这一策略。第二:往往会画线段图的也能够分析清题目的数量关系,甚至说,不画线段图也能分清。而不会做的也不会画,所以,他们觉得线段图是没有必要的。对于学生的`这一问题,我们只有在平时的教学中多强调线段图的简洁,方便性,同时,只要学生的线段图上能够反映出三要素,也就应该加以鼓励。如若不然,恐怕学生会更加不喜欢线段图了。
还有,班级中大括号的画法实在是难看之极。我们同轨的老师交流了一下,总结出一个方法:先画两根直线,然后加个小帽子(中间的尖),再把两头弯一下。让学生画了几个,果然本子上的大括号漂亮多了。
用列表法解决问题能使信息显得很有条理,在教学第一课时的时候有很多学生没有真正理解列表法的好处,第二课时是让学生用列表的方法去解决两积求和(差)的问题,让学生在解决问题的过程中,继续体验列表的价值,并能用分析法和综合法去寻找数量之间的关系。从而提高学生解决问题的能力。教学重点在于进一步学会用列表收集和整理信息的方法解决实际问题,而难点就在于怎样正确的运用列表的方法来整理较复杂的信息。
在第一课时的学习中,学生对于列表法的掌握并不好,主要在于不懂得列表的好处以及怎样列表来思考分析问题,很多学生甚至是在算过结果后再去填表,把列表整理信息变成了一种无用的操作。因此本节课上我注意让学生仔细观察例题,发现信息比较多,比较乱,从而想到用列表的方法来整理,而在整理的过程中一是要学生抓住关键字,用最简洁的语言表述出最准确的意思,要从表格中就能看出题目的完整意思。比如象例题的3行桃树,每行7棵,很多学生只会整理3行和7棵,这里我就注意引导学生分析这两个条件放在一起表示的意思会让人误解为是3行一共栽了7棵,从而意思表达不准确,应该写清楚是每行7棵,这样比较准确。第二就是要会根据问题有选择地整理条件,如例题中给了我们三组条件,而问题是桃树和梨树一共有多少棵。通过让学生先自主整理列表,再汇报讨论,让学生明确条件虽多,但我们只需要整理与问题相关的条件即可。
在教学中也有学生是把所有的信息都整理在表中,就是整理一个3×3的表格,然后看问题求的是什么,根据问题再去表中找相关的信息。这样也是可以的,我给予了肯定,而且学生说出了在解决下一个问题时就不要重复列表了,就只要看这张表就可以解决问题。教学时没有采用固定的方法,而是让学生体会自己的方法,选择自己喜欢的列表方式去解决问题。
在上完试一试后,我没有直接让学生练习,而是让学生根据例题的信息自己提出问题,并让学生有选择地解决,这样做的目的一是巩固用列表解决问题的策略。二是看学生提问题,再根据问题选择条件整理的能力,而更重要是让学生获得解决问题的一些具体的经验。并通过比较把这些具体的经验上升到数学思考的高度,形成一定的解决思路。
通过上述的处理,学生对用列表来整理条件问题及根据表格来分析解答问题的掌握上还是比较好的,但是本节课我觉得也有几点不足。
一是上课时没有过用多媒体进行教学,学生列的表没有及时给大家展示,只能在黑板上画出学生的作品,耽误了一些时间。
二是从练习中可以看出,学生还没有自学养成用列表法解决问题的`习惯,体现在做练习中,如果没有要求让列表,学生是不愿意列表的,导致时常做题出错。
三是当学生列表后,没有让学生多进行据表分析,对于整理好的表格进行分析得不够,可能也是因为我觉得这部分知识学生分析起来不太困难,但回想起来如果让一些后进一点的学生对说一说,多分析一下这些表格,对于他们用此方法再解答一些更复杂的实际问题可能会有一些更大的帮助。
四是学生的小组交流不够多,其实在教案中我设计了让小组活动交流的时间,但在实际的课程中,真正让学生交流看法的活动只有一次,而且个别学生在交流在做与课堂无关的事,说与课堂无关的话,使小组交流变成了形式。在后面的教学中应该严加要求努力加以改进。
作者:常州市中山路小学 徐青
教学目标:
在解决有关面积计算的实际问题过程中,学会用画直观示意图的方法整理相关信息,能借助所画示意图分析实际问题中的数量关系,确实解决问题的正确思路;
在对解决问题实际问题过程的不断反思中,感受用画直观示意图的方法对于解决问题的价值,体会到画图整理信息是解决问题的一种常用策略。
进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。
教学过程:
一、积累铺垫
1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)
2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。
3.出示第一关:中山路小学原有一个花圃是长方形,长4米,宽3米。校园扩建时,长增加了2米。(1)学生画图(2)对比交流
4.从图中你能求出什么?
二、初步感知
1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)
3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图, (2)对比交流:
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)
三、再次体验
1.出示第三关:中山路小学原来有一个宽30米的前操场。因为要造“牡丹公寓”,宽减少了10米,这样前操场面积就减少了400平方米。现在前操场的面积是多少平方米?
2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?
3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)
4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。
四、深入体验
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(3)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米,宽增加了15米。这个操场面积增加了多少平方米?
学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
2.出示第五关:中山路小学原来有一个长方形操场。如果这个操场的长增加20米,或者宽增加15米,面积都比原来增加600平方米。你知道原来操场的面积是多少平方米吗?
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)
(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)
五、全课总结
今天学习了“解决问题的策略”,你有什么收获?
教学过程与反思:
一、创设问题情境,激活相关经验
(出示两幅天平图,引导学生观察思考)
师:(指图1)这是一架平衡的天平,从图中你能看出1个苹果的质量和1个梨的质量之间有什么关系吗?
生:1个苹果的质量是1个梨的2倍。
生:1个梨的质量是1个苹果的1/2。
师:根据两幅天平图,你能求出1个苹果和1个梨各重多少吗?
生:1个苹果重200克,1个梨重100克。
师:你是怎样推想的?
生:把图2左盘中的1个苹果换成2个梨,就成了4个梨重400克,可以求出1个梨重100克,再求出1个苹果重200克。
生:把图2左盘中的2个梨换成1个苹果,就是2个苹果重400克,1个苹果就重200克,再求出1个梨重100克。
(课件动态演示把1个苹果换成2个梨或者把2个梨换成1个苹果)
师:在解决刚才这个问题时,大家用到了“换”的方法,这是数学中一种非常重要的策略——替换。(板书)其实早在1700多年前有一个叫曹冲的小朋友,就用替换的策略演绎了一个生动的故事,你们听说过吗?
(出示“曹冲称象”的图片)
师:曹冲是如何用替换的办法称出大象的质量的?
生:曹冲是用石头替换大象的。
【反思】导学的艺术在于唤醒。学生虽然是第一次正式学习用替换的策略解决问题,但在他们的生活经验中已模糊地经历过类似的方法,只是还没有建立起一种完整的数学模型。所以在课的引入部分,从直观的天平图,到感性的数形结合,再到抽象的推理计算,并结合“曹冲称象”的典故,一下子就扣住学生心弦,唤醒了他们头脑里已有的生活经验,为下面的探究过程做好了心理准备和认知铺垫。
二、自主探索实践,研究替换策略
(图文呈现倒题,引导分析)
例题:小明把720毫升果汁倒人6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。1/3。小杯和大杯的容量各是多少毫升?
师:题中告诉了我们哪些已知条件?
(生答略)
师:怎么理解“小杯的容量是大杯的1/3”?大杯和小杯容量的关系还可以怎样说?
生:大杯的容量是小杯的3倍。
生:1个大杯可替换成3个小杯。
生:3个小杯可替换成1个大杯。
师:现在能直接求出小杯和大杯的容量吗?
生:不能。
师:怎样用替换的策略来解决这个问题呢?
(生互相说)
师:选择一种你喜欢的方式进行替换,在老师发给你的纸上画出示意图来,然后根据示意图,再列出算式解答。
(生画图、列式计算,然后同桌交流)
师:谁能把你的方法介绍给大家?
(学生代表在投影仪上展示和介绍)
生:我把1个大杯换成3个小杯,这样就有9个小杯。一共是720毫升,720÷9=80,可以算出一个小杯的容量是80毫升;80÷1/3=240,1个大杯的容量就是240毫升。
生:我是把6个小杯换成2个大杯,这样就有3个大杯,720÷3=240,可以先求出一个大杯的容量是240毫升;240×1/3=80,再求出1个小坪的容量是80毫升。
(师结合学生汇报,逐步形成板书)
【反思】如何将静态的文字转化为学生动态的思考?如何在动态的思考中感受替换的过程?这是非常值得关注的两个问题。所以在教学过程中,先让学生自主分析数量关系,然后组织小组讨论寻求策略,接着独立画图感悟思考,最后师生交流,教师用简洁明了的板书体现替换的策略。这一过程符合学生的认知规律,同时也体现了“数学教学是数学活动的教学”,师生在互动对话中建构数学模型。
教学内容:五上第63~64页的例1、例2和练一练。教学目标:1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。3、增强解决问题的策略意识,提高解决问题的实际能力。教学重点:能对信息进行用“一一列举”的策略解决实际问题。教学难点:能有条理的一一列举,并进行分析教学准备:课件、小棒、表格、一。谈话导入课前谈话:有谁听说田忌赛马的故事,你能简单的给大家叙述一下?谈话:同学们,在四年级我们已经接触过解决问题的策略,还记得“策略”是什么意思吗?(指名答:方法、谋略)那么你们还记得我们曾经学过哪些解决问题的策略吗?(画图,列表)引入课题:今天我们就继续来学习解决问题的策略(板上课题)二、自主探究,运用列举(一)创设情景,引出问题(1)创设情景:看,这是哪里?下面我们就一起走进东山公园:现在公园里工人师傅用18根1米长的栅栏围成一个长方形花圃的景点。供游客们休闲和拍照。那有多少种不同的围法?师:从题目中你获得了哪些数学信息?生:用18根1米长的栅栏围成一个长方形花圃。(18根1米长的栅栏围成的长方形周长就是18米。)(2)动手操作:师:愿意帮助工人叔叔吗?下面就以小组为单位拿出你们手上的牙签,每根牙签代替一根1米长的栅栏,动手来围围看。(同桌合作摆牙签,教师巡视摆一摆),写出你摆的长方形长和宽分别是多少?谁先摆好谁就站起来给大家展示一下。①汇报交流:生1:长8,宽1米。生2:长5,宽4米。……一一展示学生得围法师: 刚才同学们利用小棒围一围列举出了各种围法,但运用摆小棒寻求答案感觉怎样?生1:用小棒摆有点烦。生2:很乱,答案可能有重复和遗漏师:有没有办法有序的、很快一个不落的将所有的围法都找出来?你们准备怎么做?生1:有顺序的一一列举出师:边板书边一起列举?这种方法我们把它叫做文字列举。板书文字列举除了以上几种情况,还有不同意见吗?你们是怎么想的?生1:18根1米长的栅栏围成的长方形周长就是18米。所以长和宽的和只要是9米。师:真不错,那除了用文字列举的方法之外,还有不同的方法吗?生1:列表列举师:板书列表列举拿出课前准备的表(教材p63)长方形的长/分米 长方形的宽/分米 长方形的面积/平方分米 学生完成作业纸小结师:对于这类问题的解决我们可以用文字列举法,也可以用列表整理的方法,用这两种一一列举的方法能够有序、一个不落的把各种情况找出来。师板书:有序、不重复( 3)观察 发现师: 现在我们已经找到 4种不同的围法,因为现在围的是长方形花圃,供游客们休闲和拍照。如果你是工人师傅你会选择那种围法?生:第4种(长5宽4)师:为什么?生:因为第4种围法围成的长方形最大,可以供更多游客拍照。师:是吗?请同学们口算出各个长方形的面积,再检验一下是不是第4种(长5宽4)面积最大。师:仔细观察表格中的长、宽、面积,你发现了什么?小组讨论一下?教师小结:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。所以你们的选择是有道理的。
xx月xx日教研室成员来我校常规调研,汪主任听了我的一节《解决问题的策略》,课前我是这样思考的:学生在例题1中初步体验了替换的策略,教学例题2时要主动应用这些策略解决实际问题。教材鼓励学生解决问题方法的多样化,所以在实际教学中,我要注意把握。如:提出的假设可以是多样的。教材呈现了两种比较典型的假设,即假设10只都是大船和假设大船和小船各5只。另外开展替换活动的载体可以是多样的,图画枚举和列表枚举等,这些都是已经教学的解决问题的策略,学生有能力应用这些策略。结合使用画图、列表、枚举,也体现了解决问题的策略是综合而灵活的。
教学例题2时,一是组织猜想,引发假设,拓展思路。在创设情境后可以让学生猜一猜可能是10只怎样的船。通过猜想启发学生思路,引导学生指出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。二是验证假设,引导替换,有序思考。每一个学生都要对自己的假设进行验证,看这些船是否正好能坐42人。如果学生的假设多样了,那么大多数假设都不是问题的答案,需要调整,即进行相应的替换。学生的替换活动逐步进行,培养学生有序思考的习惯。三是交流解法,寻找共性,体验策略。可以先交流各种假设与替换的方法,以及采用画图或列表的策略,发展思维的开放性与灵活性,再寻找这些方法的共同特点,进一步体会解决问题的策略。
例题2是综合运用多种策略解决实际问题,所以学生思考的空间大了,难度高了。对于教材上出现的画图假设,列表假设,等等,都可以肯定,在教学中不必要求学生掌握每种方法,可选择自己最合适的方法理解。并且要让学生体会到,例题2中介绍的画图假设、列表假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图列表等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。
解决问题的策略这一单元是新课程的一个创新,以前所没有涉及的,我在教学中也是努力在学习。往往是拿到教材,先翻阅教师用书,看看前人是怎样总结的,他的意图怎样,但往往会框住我们的思维,所以汪主任鼓励我们要有自己的思考,自己的创新。这是我要努力的方向。让我以三个学来勉励自己:教学也;始于自学学也;终于教人,学也。