作为一位杰出的老师,常常要写一份优秀的教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。怎样写教学设计才更能起到其作用呢?本文是细心的小编Waner为大家收集整理的人教版初中数学教案【优秀15篇】,希望对大家有一些参考价值。
教学目标:
1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.
2.理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角的性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程:
一、创设情境,引入新课
引导语:
我们生活的世界中,蕴涵着大量的相交线和平行线.
本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.
二、尝试活动,探索新知
教师出示一块布片和一把剪刀,表演剪刀剪布的过程.
教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?
学生观察、思考、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.
教师提问:我们可以把剪刀抽象成什么简单的图形?
学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.
教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)
学生根据观察和度量完成下表:
两条直线相交、所形成的角、分类、位置关系、数量关系
教师提问:
如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?
学生思考回答:
只会改变数量关系而不会改变位置关系.
师生共同定义邻补角、对顶角:
有一条公共边,而且另一边互为反向延长线的。两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.
教师提问:
你同意下列说法吗?如果错误,如何订正?
1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.
2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.
3.邻补角是互补的两个角,互补的两个角也是邻补角.
学生思考回答:1、2是对的,3是错的.
第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.
教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.
教师把说理过程规范地板书:
在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角的性质:
对顶角相等.
强调对顶角的概念与对顶角的性质不能混淆:
对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
三、例题讲解
【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、巩固练习
1.判断下列图中是否存在对顶角.
2.按要求完成下列各题.
(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.
eq o(sup7(,图(1)) ,图(2))
(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?
【答案】
1.都不存在对顶角.
2.(1)对顶角,邻补角.
对顶角:∠AOC和∠BOD,∠AOD和∠BOC.
邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、课堂小结
教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。
课题:应用题的对比
教学目标
1.掌握一个数比另一个数多几和求比一个数多几的应用题的数量关系。
2.正确解答应用题。
教学重点
掌握两类应用题的数量关系。
教学难点
掌握两类应用题的数量关系。
教具学具准备
投影仪、投影片、学具等。
教学步骤
(一)铺垫孕伏
1.游戏活动,创设情境。
(1)启发学生根据两组人数不同的条件,提出问题,并口头解答,使学生明确,可以提出:
甲组有8人,乙组有6人,甲组比乙组多几人?
甲组有8人,乙组比甲组少2人,乙组有几人?
乙组有6人,甲组比乙组多2人,甲组有几人?
甲组有8人,乙组有6人,乙组比甲组少几人?
(2)通过游戏,互相议一议,你知道了什么?
数量关系一样,只是问法不一样。
②甲组有8人,乙组比甲组少2人,乙组有几人?
知道甲组人多,乙组人少,求少的。
③乙组有6人,甲组比乙组多2人,甲组有几人?
知道甲组人多,乙组人少,求多的。
注意:学生提出的问题不要限制,但教师重点训练①、②两种类型。
2.操作学具,巩固所学的数量关系。
(1)用学具摆一摆:一个数比另一个数多几的数量关系。
(2)同桌互相交流,知道了什么?
教师巡视。并个别指导,学生操作和口述。
(二)探究新知
1.演示课件“比一个数少几的应用题(例12)”,出示例12.
2.小组活动。
(1)教师继续演示课件“比一个数少几的应用题(例12)”,学生讨论两道题的已知条件和所求问题。
(2)通过讨论和看示意图,知道了什么?
使学生明确:两道题都是红花多,黄花少。
(3)想一想:这两道题有什么相同点,有什么不同点?
使学生明确:第一个已知条件相同;不同的是第一题的第二个条件是第二题要求的问题,第一题要求的问题是第二题已知的第二个条件。两题都用减法计算。
3.独立解答。
(1)填空(课本).
(2)订正时,说一说是怎样想的?
4.反馈练习:完成“做一做”。
独立填在课本上,订正时启发学生互相说一说是怎样想的?
(三)全课小结
师生共同总结这节课学习什么,注意什么。
随堂练习
1.练习二十四第8题。
分组练习,组长带领同学订正。
2.练习二十四第3题改编为接力计算。
教学目标
1.理解有理数除法的意义,熟练
掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行运算,教学难点是理解法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
(二)知识结构
(三)教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。
如:,则2与,-2与互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可。(2)正数的倒数是正数,负数的倒数仍是负数。
(3)负倒数的定义:乘积是-1的两个数互为负倒数。
教学设计示例
一、素质教育目标
(一)知识教学点
1.了解有理数除法的定义。
2.理解倒数的意义。
3.掌握有理数除法法则,会进行运算。
(二)能力训练点
1.通过有理数除法法则的导出及运算,让学生体会转化思想。2.培养学生运用数学思想指导思维活动的能力。
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性。
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美。
二、学法引导
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力。
2.学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1.重点:除法法则的灵活运用和倒数的概念。
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值。
3.疑点:对零不能作除数与零没有倒数的理解。
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔。
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成。
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题。
【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习。(二)探索新知,讲授新课
1.倒数。
(出示投影1)
4×=1;×()=1;0.5×()=1;
0×()=1;-4×()=1;×()=1.
学生活动:口答以上题目。
【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法。
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数。(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数。
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是。
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是。对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习。
(出示投影2)
求下列各数的倒数:
(1);(2);(3);
(4);(5)-5;(6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求。
2.
计算:8÷(-4).
计算:8×()=?(-2)
∴8÷(-4)=8×().
再尝试:-16÷(-2)=?-16×()=?
师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?
学生活动:同桌互相讨论。(一个学生回答)
师强调后板书:
[板书]
【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力。
(三)尝试反馈,巩固练习
师在黑板上出示例题。
计算(1)(-36)÷9,(2)()÷().
学生尝试做此题目。
(出示投影3)
1.计算:
(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;
(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).
2.计算:
(1)()÷();(2)(-6.5)÷0.13;
(3)()÷();(4)÷(-1).
学生活动:1题让学生抢答,教师用复合胶片显示结果。2题在练习本上演示,两个同学板演(教师订正).
【教法说明】此组练习中两个题目都是对的直接应用。1题是整数,利用口答形式训练学生速算能力。2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算。
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答。
[板书]
一。教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
三。教学过程
(一)创设情景,引入课题
1、本班共有40人,请问能确定男_几人吗?为什么?
(1)如果设本班男生x人,_人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2、男生比_了2人。设男生x人,_人。方程如何表示?x,y的值是多少?
3、本班男生比_2人且男_40人。设该班男生x人,_人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1、二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2、二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验。]
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2、你还有什么问题或想法需要和大家交流?
3、作业本。
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数_代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的`目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
应用二元一次方程组——鸡兔同笼
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识。
2、通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
确立等量关系,列出正确的二元一次方程组。
教学流程:
课前回顾
复习:列一元一次方程解应用题的一般步骤
情境引入
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法
用表示头,先画35个头
将所有头都看作鸡的,用表示腿,画出了70只腿
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿
四条腿的是兔子(12只),两条腿的是鸡(23只)
(2)一元一次方程法:
鸡头+兔头=35
鸡脚+兔脚=94
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94
比算术法容易理解
想一想:那我们能不能用更简单的方法来解决这些问题呢?
回顾上节课学习过的二元一次方程,能不能解决这一问题?
(3)二元一次方程法
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只。
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只。
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94
解此方程组得:
练习1:
1、设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15
2、小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
三、合作探究
探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?
题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得
x=48
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长
(井深+1
解:设绳长x尺,井深y尺,则由题意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙。设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B)。
归纳:
列二元一次方程解决实际问题的一般步骤:
审:审清题目中的等量关系。
设:设未知数。
列:根据等量关系,列出方程组。
解:解方程组,求出未知数。
答:检验所求出未知数是否符合题意,写出答案。
四、自主思考
探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?
解:设做竖式纸盒X个,横式纸盒y个。根据题意,得
x+2y=1000
4x+3y=2000
解这个方程组得x=200
y=400
答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。
练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?
解:设做竖式纸盒x个,做横式纸盒y个,根据题意
y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完。
归纳:
五、达标测评
1、解下列应用题
(1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
解:设4分邮票x张,8分邮票y张,由题意得:
4x+8y=6800①
y-x=40②
所以,4分邮票540张,8分邮票580张
(2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天
的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成
分析:由于工作总量未知,我们将其设为单位1
晴天一天可完成
雨天一天可完成
解:设晴天x天,雨天y天,工作总量为单位1,由题意得:
总天数:7+10=17
所以,共17天可完成任务
六、应用提高
学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?
分析:铅笔数量+圆珠笔数量+钢笔数量=232
铅笔数量=圆珠笔数量×4
铅笔价格+圆珠笔价格+钢笔价格=300
解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:
将②代入①和③中,得二元一次方程组
4y+y+z=232④
0.6×4y+2.7x+6.3z=300⑤
解得
所以,铅笔175支,圆珠笔44支,钢笔12支
七、体验收获
1、解决鸡兔同笼问题
2、解决以绳测井问题
3、解应用题的一般步骤
七、布置作业
教材116页习题第2、3题。
x+y=35
2x+4y=94
x=23
y=12
绳长的三分之一-井深=5
绳长的四分之一-井深=1
-y=5①
①-②,得
-y=1②
-y=5①
-y=5①
-y=5①
X=540
Y=580
y-x=3②
x=7
y=10
x+y+z=232①
x=4y②
0.6x+2.7y+6.3z=300③
X=176
Y=44
Z=12
一元一次不等式组
教学目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点
正确分析实际问题中的不等关系,列出不等式组。
知识重点
建立不等式组解实际问题的数学模型。
探究实际问题
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的。解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本、这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等、(学生回答,教师追问)
掌握用因式分解法解一元二次方程。
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。
重点
用因式分解法解一元二次方程。
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。
二、探索新知
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积。)
练习:下面一元二次方程解法中,正确的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练
习,步步为营,分散难点,解决关键问题.
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算.
教师针对学生所做的方法区别优劣.
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算?这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成?
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+()-()-().
2.判断
式子-7+1-5-9的正确读法是().
A.负7、正1、负5、负9;
B.减7、加1、减5、减9;
C.负7、加1、负5、减9;
D.负7、加1、减5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.
-9+6+11-7
=-9-7+6+11.
学生活动:按教师要求口答并读出结果.
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
学生活动:讨论后回答.
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.
师:-9-7+6+11怎样计算?
学生活动:口答
[板书]
-9-7+6+11
=-16+17
=1
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
学生活动:四个同学板演,其他同学在练习本上做.
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算.
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.
【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答.
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.
八、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法.
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,,哪个最大,哪个最小?
(2)当时,,,哪个最大,哪个最小?
十、板书设计
教学目的:
(一)知识点目标:
1、了解正数和负数在实际生活中的应用。
2、深刻理解正数和负数是反映客观世界中具有相反意义的理。
3、进一步理解0的特殊意义。
(二)能力训练目标:
1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2、熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1、认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。
2、下列说法中正确的( )
A、带有“一”的数是负数; B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6 练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1 的第3、6、7、8题。
活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
课后反思:————
问题描述:
初中数学教学案例
初中的,随便那个年级。20__字。案例和反思
1个回答 分类:数学 20__-11-30
问题解答:
我来补答
2.3 平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示。
教师活动:引导学生说理。
因为a‖b 因为a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
语言叙述:
性质2 两条直线被第三条直线所截,内错角相等。
(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °.理由:.
②若∠1 = 110°,则∠3 = °.理由:.
③若∠1 = 110°,则∠4 = °.理由:.
(2)如图,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2= .
学生提问,并找出回答问题的同学。
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
初一数学教案人教版1
一、学习目标:1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点:
重 点: 多项式除以单项式的运算法则及其应用
难 点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。
E、多项式除以单项式法则
第三十四学时:14.2.1平方差公式
一、学习目标:1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重 点:平方差公式的推导和应用
难 点: 理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)× (2)998×1002
导入新课: 计算下列多项式的积。
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
初一数学教案人教版2
一、学习目标:1.完全平方公式的推导及其应用。
2.完全平方公式的几何解释。
二、重点难点:
重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用
难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子。每当有孩子到他家做客时,老人都要拿出糖果招待他们。来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍。
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
(1)1022 (2)992
初一数学教案人教版3
一、学习目标:1.添括号法则。
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的。
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则。
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确。
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
第三十七学时:14.3.1用提公因式法分解因式
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来
难 点: 让学生识别多项式的公因式。
三、合作学习:
公因式与提公因式法分解因式的概念。
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤。
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的。
课堂练习
1.写出下列多项式各项的公因式。
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤。:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的。
注意:(a-b)2=(b-a)2
六、作业 1、教科书习题
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)+(-2)
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
第三十八学时:14.3.2 用“平方差公式”分解因式
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点: 掌握运用平方差公式分解因式。
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1.请看乘法公式
(a+b)(a-b)=a2-b2 (1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
补充例题:判断下列分解因式是否正确。
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).
五、课堂练习教科书练习
六、作业 1、教科书习题
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
初一数学教案人教版4
一、学习目标:
1.使学生会用完全平方公式分解因式。
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点: 让学生掌握多步骤、多方法分解因式方法
难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点。
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
练一练。下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习: 教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
初一数学教案人教版5
教学目标
1.等腰三角形的概念。 2.等腰三角形的性质。 3.等腰三角形的概念及性质的应用。
教学重点: 1.等腰三角形的概念及性质。 2.等腰三角形性质的应用。
教学难点:等腰三角形三线合一的性质的理解及其应用。
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数。
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角。
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则 ∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识。
Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。
初一数学教案人教版
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程。
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。
重点
求根公式的推导和公式法的应用。
难点
一元二次方程求根公式的推导。
一、复习引入
1、前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)
2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评)。
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根。
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接开平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。
(2)这个式子叫做一元二次方程的求根公式。
(3)利用求根公式解一元二次方程的方法叫公式法。
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根。
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6)。
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况。
五、作业布置
教材第17页 习题4
第一章 有理数
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。
2、通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系。
(2)数轴能反映数的性质。
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。
(4)数轴可使有理数大小的比较形象化。
3、对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分。
4、正确理解绝对值的概念是难点。
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值。
(2)有理数的绝对值是一个非负数,即最小的绝对值是零。
(3)两个互为相反数的绝对值相等,即│a│=│-a│。
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。
(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。
(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值。
(4)会利用数轴和绝对值比较有理数的大小。
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值。
2、难点:准确理解负数、绝对值等概念。
3、关键:正确理解负数的意义和绝对值的意义。
课时划分
1.1 正数和负数 2课时
1.2 有理数 5课时
1.3 有理数的加减法4课时
1.4 有理数的乘除法5课时
1.5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1.1正数和负数
第一课时
三维目标
一。知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二。过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三。情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解。 教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前
11面也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面33
的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。?正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
八、作业布置
1、课本第5页习题1.1复习巩固第1、2、3题。
九、板书设计
1.1正数和负数
第一课时
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面
11也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面的33
“+”、“-”号叫做它的符号,这种符号叫做性质符号。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
1.1正数和负数
第二课时
三维目标
一。知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二。过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三。情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键
1、重点:正确理解正、负数的概念,能应用正数、?负数表示生活中具有相反意义的量。
2、难点:正数、负数概念的综合运用。
3、关键:通过对实例的进一步分析,?使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备
投影仪。
教学过程
四、复习提问课堂引入
1、什么叫正数?什么叫负数?举例说明,?有没有既不是正数也不是负数的数?
2、如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.20__年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,?中国增长7.5%。
写出这些国家20__年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。?“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.