在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,以下是编辑帮大伙儿收集的15篇七年级上册数学教案的相关文章,希望大家能够喜欢。
【教学目标】
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型
【教学过程】
一、创设情境
多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.
设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.
二、讨论(动态研究)
课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
四、探索
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
五、作业
1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.
2、阅读教科书第119页的实验与探究,并思考有关问题。
教学目标
(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进行一位数乘两位数的口算。
(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,能够比较熟练地进行口算。
教学重点和难点
重点:在理解的基础上,掌握用一位数乘的口算过程。
难点:理解并掌握满十向前一位进“1”的算理。
教学过程 设计
(一)复习准备
投影出示口算题:
(用纸板覆盖,一题一题出示)
10×5
14×2
100×7
130×2
20×3
34×2
200×4
210×3
教师提问:14×2请你说一说口算过程。(学生回答10×2=20,4×2=8,20+8=28)
教师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学回答(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)
教师揭示课题:(板书:一位数乘两位数、乘整百整十数)
(二)学习新课
出示例1:板书:口算14×3.
想一想 14×3的意义是什么?(3个14是多少)
根据14×3的意义,用小棒摆出来。
想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.
板书:14×3=42.
比较14×3与14×2两道口算的异同:
(同桌或四人小组的同学互相启发进行讨论)然后请同学回答:两道题口算过程是一样的。都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满 了十,最后一步是整十加上两位数。
做一做
投影出示:
16×2=
26×3=
25×2=
要求同学在练习本上直接写出结果。再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上。待同学写完后集体订正。
分别请同学说出口算过程。
16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.
26×3,25×2分别请同学互相说,集体说,个人说。反复叙述口算过程。
出示例2:板书:口算:140×3=
请同学想一想应该怎样做,然后试做。(教师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的。
集中起来说出不同的想法:
因为14×3=42,那么140×3只需在42后面添上一个0得420.
把140看成14个十,14个十乘3得42个十,即420.
3乘14得42,然后再在得数后面添上一个0.
以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励。
做一做
投影出示:
130×5=
380×2=
150×6=
每人在自己本上直接写出结果。四人小组进行讨论,能用几种方法说出口算过程。
小结 今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”。
(三)巩固反馈
1、基本练习:(投影出示)
首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说。最后集体订正。
2、填空练习:(投影出示)
明确题目要求后,在课本上填括号。
订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程。
3、找朋友游戏。
15×3
18×2
12×5
14×4
35×2
220×4
240×3
25×4
310×3
32×3
26×2
160×6
12×4
16×5
14×3
36×2
120×4
160×5
240×2
260×2
题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友。
45
36
60
56
70
880
720
100
910
96
52
960
48
90
72
42
480
900
480
520
4、文字叙述题。
投影片出示,同学们在作业 本上做。四个同学写在小黑板上,订正时用。
(1)乘数是7,被乘数是12,积是多少?
12×7=84
(2)250的3倍是多少?
250×3=750
作业 :看书第1页。
课堂教学设计说明
本节课教学内容口算“一位数乘两位数、乘整百整十数”。首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备。
讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比较,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,体现以学生为主体。使学生真正悟出新旧知识的内在联系。
通过形式多样的练习,达到能准确、迅速地口算的目的。
板书设计
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3、通过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、( )2=9; 2.( )2 =0.25;
5、( )2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26②247③0.2④3⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是
教学目标
【知识与能力目标】
1、巩固理解有理数的概念;
2、掌握数轴的意义及构成特点,明确其在实际中的应用;
3、会用数轴上的点表示有理数。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例;
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
二、例题分析
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是;
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;
(4)如图,a、b为有理数,则a0,b0,ab
四、课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-2000。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
教学目标
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动) 设计理念
设置情境
引入课题 教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解
寻找规律
归纳结论 问题3:
1, 你能举出一些在现实生活中用直线表示数的实际例子吗?
2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4, 每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结 请学生总结:
1, 数轴的三个要素;
2, 数轴的作以及数与点的转化方法。
本课作业
1, 必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
教学目标
1 知识与技能:
认识平行四边形和梯形,掌握特征,理解四边形间的关系。
2 过程与方法:
经历把四边形分类,抽象概括特征的过程,动手操作,合作交流,探讨平行四边形和长方形、正方形之间的关系,发展学生的空间观念和空间思维能力,培养创新意识。
3 情感态度与价值观:
培养学生学以致用的习惯,体会数学的应用于没敢,激发学生学习数学的兴趣、增强自信心。
教学重难点
1 教学重点:
掌握平行四边形和梯形的特征。
2 教学难点:
探讨平行四边形和长方形、正方形的关系。
教学工具
多媒体设备
教学过程
1 谈话引入
一、 复习旧知,导入新课
1、复习旧知
师:同学们,你们认识平行线吗?请看屏幕,这里面哪一组是平行线?
课件出示:
(1)提问:第②组是平行线吗?第⑤组呢?我们来看这三组平行线,请同学们仔细观察。
课件动态依次演示:
(2)师:认识这个四边形吗?
2、点明课题
师:今天我们就来学习──平行四边形的认识。
(二)自主探究,合作交流
1、平行四边形的意义
(1)提供感性材料
师:生活中你见过平行四边形吗?在哪见过,能给大家说一说吗?
①学生尝试举例。
②教师课件出示生活中与平行四边形有关的实例。
a.引导学生找一找、说一说课件实例中的平行四边形。
b.课件呈现:上面的各图中都有平行四边形。
(2)合作探究平行四边形的特征
①师:我们把刚才找到的平行四边形放在一起来观察一下,结合我们对平行四边形初步的认识,谁能说一说它们有哪些共同的特点?
预设:对边平行、对边相等、对角相等
(4)巩固平行四边形的定义。
师:现在,请同学们闭上眼睛想一想平行四边形什么样?想好了吗?下面三个图形中哪一个是平行四边形?
2、认识平行四边形的底和高
(1)介绍平行四边形的底和高。(可以用学生探究平行四边形边的特点时素材为例)
刚才同学们证明平行四边形对边平行的特点时用到了平行线的性质。这条垂直线段就是平行四边形的高。说一说什么是平行四边形的高?
教师帮助学生梳理语言:从平行四边形一条边上的一点向对边引一条垂线,这点到垂足之间的距离就是平行四边形的的一条高。垂足所在的边就是底。
(2)还以这条边为底,还能再画一条高吗?可以作多少条高?这些高长度相等吗?为什么?
(3)练习:(课件出示)
①这是平行四边形的高吗?为什么?
②从这点怎样作平行四边形的高吗?
4、认识梯形的特征。
(1)感知梯形。
①你在生活中见过梯形吗?让学生先说一说。
②老师也搜集了一些实物图片,找一找哪儿有梯形?
课件出示后随着学生的回答逐步隐去情境图,抽象出梯形几何图形。
(2)探究梯形的特征。
刚才我们在生活中找到了这么多的梯形,梯形有什么共同的特点呢?我们一起来研究这个问题。
教师:你发现梯形有哪些共同的特征?与学生一同归纳并板书。
预设:是四边形,只有一组对边平行。
教师:哪些图形不具备这样的特征?为什么?
预设:第二组中的第3个和第5个图形不具备梯形的特征,第3个图形没有一组对比平行,第5个图形不是四边形。
⑤归纳总结梯形的概念。
教师:看来同学们对梯形的认识很深刻,你能用一句比较简练的语言说一说什么是梯形吗?
学生:只有一组对边平行的四边形叫做梯形。
5、认识梯形的各部分名称。
(1)介绍梯形的底和腰。
教师:你知道四条边在梯形中叫什么吗?
学生:平行的一组对边分别叫梯形的上底和下底,不平行的一组对边叫梯形的腰。
(2)介绍梯形的高。
教师:什么是梯形的高?
学生:从上底的一个点出发向下底作一条垂线,这条垂线段叫做梯形的高。
教师:梯形有多少条高?
学生:梯形的高有无数条,只要夹在两条平行线之间,也就是两底之间的垂线段,都是梯形的高。
(三)内化理解,沟通联系
教师:刚才我们对梯形有了一个完整的、全面的认识。现在我们来打开学具袋,找出梯形。没有,那我们就利用这些平面图形制作一个梯形吧。
要求:每个图形只沿直线剪一下,使之变成梯形。四人一组,合作完成。
1、内化理解。
(1)用长方形剪出直角梯形。
教师:谁是用长方形材料剪的?你是怎么剪的?
学生汇报。
预设:
看看他剪的梯形有什么特点?
教师:有一个角是直角的梯形叫做直角梯形。
在剪裁的过程中,你发现哪几个图形在剪裁的方法上与长方形有共同之处?同样是四边形为什么任意四边形的裁剪方法不同?
小结:平行四边形、长方形、正方形都是两组对边分别平行的四边形,所以只需要破坏一组对边的平行关系;而任意四边形则需要创造出一组具有平行关系的对边。
2、沟通联系。
(1)现在我们都已经认识了哪些四边形?
(2)我们用一个椭圆形的大圈表示所有的四边形,这个椭圆形的圈就表示所有的长方形,以此类推分别表示正方形、平行四边形和梯形。
(3)长方形、正方形、平行四边形和梯形都属于四边形,课件演示:长方形、正方形、平行四边形和梯形进入四边形的大圈,能这样表示它们之间的关系吗?
(4)相互说一说应该怎样表示出这些四边形之间的关系,为什么?
让学生两人一组适当交流,在本上画一画。
(5)结合学生的回答,教师逐步完善关系图,课件呈现:
3 巩固提升
1、选择:(课件出示)
上图中相对应的底和高是( B D )。
A.6和1 B.5和4 C.2和4 D.3和1
2、说一说下图平行四边形的底和高分别是多少厘米?(每个方格边长1厘米)
课后小结
这节课学习了什么?你有什么收获?(小组说--组内总结--组间交流)
1、认识平行四边形和梯形,了解平行四边形和梯形的特征。
2、使学生了解长方形、正方形、平行四边形和梯形四种图形的关系。
3、认识平行四边形的不稳定性。
板书
平行四边形和梯形
平行四边形:两组对边分别平行的四边形叫做平行四边形。
梯形:只有一组对边平行的四边形叫梯形。
四边形之间的关系:
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、 列代数式
(1)若正方形的边长为a,则正方形的面积是 ( )
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为( )
(3)若x表示正方形棱长,则正方形的体积是( )
(4)若m表示一个有理数,则它的相反数是( )
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 ( ) 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、 请学生说出所列代数式的意义。
3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1)abc; (2)b2; (3)-5ab2; (4)y; (5)-xy2; (6)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
概念:
单项式的系数:单项式中的数字因数。
单项式的次数:在单项式中,所有字母的指数之和。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1; ② ; ③πr2; ④-ab。
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-1,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;
④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥πr2h的系数是。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、作业布置:
课本p59:1,2。
2.1第2课时整式
教学内容
1、 多项式、整式的有关概念
2、正确区分单项式和多项式
教学目标
1、知识与技能
(1)学生理解多项式的概念。
(2)使学生能准确地确定一个多项式的次数和项数。
(3)能正确区分单项式和多项式。
2、过程与方法
通过区别单项式与多项式,培养学生发散思维。
3、情感、态度与价值观
在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想。
教学重、难点
1.重点:多项式的概念及单项式的联系与区别。
2.难点及关键:多项式的次数的确定,多项式中各项的符号问题,以及多项式与单项式的联系与区别。
教学过程
一、创设情境,导入新课
师:上节课我们学习了单项式的有关概念,同学们看下面一些问题。
1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数。
, , ,2, , ,
2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.
学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励。
【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容。
师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?
学生活动:同座进行讨论,然后选代表回答。
师:谁能把1题中不是单项式的式子读出来?(师做相应板书)
学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充。
二、探索新知
师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式。
学生活动:讨论归纳什么叫多项式。可让学生互相补充。
教师概括并板书
多项式:几个单项式的和叫多项式。
师:强调每个单项式的符号问题,使学生引起注意。
练习:下列代数式 , , , , , , , , 中,是多项式的有:
___________________________________________________________.
学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论。
【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识。多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正。
师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正。
师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式。
学生活动:同桌讨论, , , ,应怎样称谓,然后找学生回答。
师:给予归纳,并做适当板书:
学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答。
根据学生回答,师归纳:
在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式。每一项包含它的符号,如 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项。
【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力。
师:提出问题:对于多项式 是几次几项式呢?多项式的项数,各单项式的次数以及各项字母的指数各是多少呢?
学生活动:讨论 (学生应都能准确回答)
师归纳:各项字母的指数,发现多项式的排列是按照字母b的升幂来排列。指出多项式的表达必须按照某个字母的升幂或降幂来排列的。
则 还可以表示为 ,还有吗?
学生活动:小组讨论并展示各组的成果。
三、应用新知,解决问题
1、填表:
2、填空:
(1) 是___次___项式; 是___次____项式; 的常数项是___________.
(2) 是____次____项式,最高次数是_______,最高次项的系数是______,常数项是_______.
3、将下列多项式按照某个字母的升幂,降幂来排列。
学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正。
【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病。2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言。
归纳:单项式和多项式统称为整式。
说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做板书,使所学知识纳入知识系统。
四、应用拓展
1、下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.
学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏
【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系。
2、单项式 , , 的和_________,它是____次_____项式。
3、 是_____次____项式, 是____次____项式,它的常数项_________.
4、 是_____次_____项式,最高次项是_______,最高次项的系数是_______,常数项是________.
5、 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).
学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言。
师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的。
【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识。
6、自编题目练习:
每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确。
【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力。
师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式。
学生活动:学生边回答师边板书,然后学生讨论是否符合要求。
【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力。
五、归纳小结
学生归纳,教师点评
“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数。前面我们还学习了单项式,掌握单项式时要注意它的系数和次数。
第二课时作业设计
1.判断题
(1)-5不是多项式( )
(2) 是二次二项式( )
(3) 是二次三项式( )
(4) 是一次三项式( )
(5) 的最高次项系数是3( )
2.填空题
(1)把上列代数式分别填在相应的括号里
, , ,0, , ,
; ;
; ;
.
(2)如果代数式 是关于 的三次二项式则 , .
3、把下列各整式填入相应的圈里:
2m,xy3+1,2ab+6,ax2+bx+c,a,
单项式 多项式
4、下列多项式分别有几项?每项的系数和次数分别是多少?
(1) (2)
5、多项式 是 次 项式,最高次项是 ,常数项是 ,按字母y的降幂排列为 。
6、下列运算中,错误的是( )。
A. B.
C. D.
7、 是 次 项式,其中最高次项的系数是 。多项式2x2-3x+1是 次 项式。
8、多项式1-x3+x2是 ( )
A.二次三项式 B.三次三项式 C.三次二项式 D.五次三项式
9、多项式x3-2x2y-xy2-1的最高次项是 ( )
A.x3 B.2x2y C.-xy2 D.x3,-2x2y,-xy2
10、52x2-x是 ( )
A.一次二项式 B.二次二项式
C.四次二项式 D.五次二项式
11、多项式3xy2-2x2y+x3y3中,按x的指数从大到小各项依次是 ,按y的指数从小到大各项依次是________
12、当a= ,b= 时, 是关于x、y的三次二项式
13、若x+y=3 ,则4-2x-2y = 。
14、一个关于字母x、y的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?你能写出符合要求的一个多项式吗?
教学目标和要求:
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.
2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.
3.初步体会类比和逆向思维的数学思想.
教学重点和难点:
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.
难点:多项式的次数.
教学过程:
一、复习引入:
观察以上所得出的四个代数式与上节课所学单项式有何区别.
(由学生小组派代表回答,教师应肯定每一位学生说出的。特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)
二、讲授新课:
1.多项式:
由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constantterm).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.
一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.
注意:
(1)多项式的次数不是所有项的次数之和;
(2)多项式的每一项都包括它前面的符号.
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)
2.例题:
例1:判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1.
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)
例2:指出下列多项式的项和次数:
(1)3x-1+3x2;(2)4x3+2x-2y2.
解:(1)三项,二次;(2)三项,三次.
例3:指出下列多项式是几次几项式.
(1)x3-x+1;(2)x3-2x2y2+3y2.
解:(1)三次三项式;(2)四次三次式.
例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.
解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1.
(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)
三、课堂小结:
①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)
教学后记:
从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.
一、教学目标:
(一)教学知识点
1、与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。
2 。近似数和有效数字 并按要求取近似数。
3、从统计图中获取信息 并用统计图形象地表示数据。
(二)能力训练要求
1、体会描述较小 数据的方法 进一步发展数感。
2、了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。
3、能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。
(三)情感与价值观要求:
1、培养学生用数学的意识和信心 体会数学的应用价值。
2、发展学生的创新能力和克服困难的勇气。
二、教学重点:
1、感受较小的数据。
2、用科学记数法表示较小的数。
3、近似数和有效数字 并能按要求取近似数。
4、读懂统计图 并能形象、有效地用统计图描述数据。
教学难点:形象、有效地用统计图描述数据。
教学过程:。创设情景 引入新
三。讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1、哪些数据用科学记数法表示比较方便?举例说明。
2、用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米。
(2)生物学家发现一种病毒的长度约为0.000043毫米;
(3)某种鲸的体重可达136 000 000千克;
(4)2003年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚。
四。小结:我们这节回顾了以下知识:
1、又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。
2、在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。
3、又一次欣赏了形象的统计图 并从中获取有用的信息。
(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。
(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?
制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可。
(1)形象统计图(略)只要合理即可。
(2)从表中的数据看出 河流越长 其流域面积越大。
(3)河流的年径流量与河流所处的位置有关系。
五。课后作业:
一、教材分析
1、教材的地位和作用
课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。
2、教学目标
根据学生的学习内容、新课程理念和认知水平,特制定如下目标:
(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。
(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。
(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。
3、重点和难点
(1)重点:培养学生的数感和统计观念。
(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。
二、学情分析
我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。
三、教法和学法分析
枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。
四、教学形式和课前准备
本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。
五、教学过程分析
教学过程 设计意图说明
新课引入
资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?
(2)你了解世界及我国有关水资源的现状吗? 借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!
探究新知活动一:
阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1) 地球上的水资源和淡水资源分布情况怎么样?
(2) 我国农业和工业耗水量情况怎么样?
(3) 我国不同年份城市生活用水的变化趋势怎么样?
(4) 根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?
学生阅读资料,通过小组合作、讨论的形式完成活动一。
活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1) 家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?
(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)
活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。
课堂小结:
1、当前水资源状况,
2、节约水资源带来的价值,
3、节约水资源的办法
布置作业
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。
通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!
教学过程:
一、课前准备:
课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。
二、课内交流、探究
师:在储蓄的过程中,你搜集到哪些相关的知识?(学生分组汇报调查结果)
(生汇报。开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:
(1)有关储蓄的一般知识,如储蓄的方式;
(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;
(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;
(4)、有关调查中遇到的困难、解决的方法和自己的感受)
师:根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。
板书:利息与本金的。比值叫做利率。
利息=本金利率时间
三、创设情景、体验储蓄
1、创设情景
师:同学们,张大爷是一个孤寡老人,他打算把自己多年来节省下来的1000元钱存入银行,定期为两年,由于他行动不便,你能帮助他进行储蓄吗?
2、体验储蓄。根据刚才的汇报情况,安排教学过程。
(1)学生拿出复制好的储蓄存款凭证进行填写。
(2)学生活动,教师了解学生填写情况后,最后利用投影仪进行订正。
(3)、充分联系生活,设置储蓄密码。
师:同学们,为了保证储蓄的安全,你认为应该用什么办法呢?
学生:(经过讨论后回答)可以设置密码。
师:设置什么样的密码比较好呢?
(学生热烈进行讨论)
生1:可以用存款人的生日。
生2、可以用有纪念意义的日期。
生3:比较容易记的数字。
师:设置密码时,一般设置比较容易记忆的数字,可以用某人的生日或与他有关系的一些数字。
师:请你们给张大妈设置一个密码。
(4)保管好存折或存单。
师:储蓄完成以后,银行要给我们一个存单或存折,我们要牢记密码,妥善保管好存单或存折。
四、运用知识、解决问题
1、运用新知识解决问题。
师:同学们,根据刚才的知识,如果告诉你两年的利率是2.43%,你能够求出张大爷储蓄到期时能获得多少利息吗?
(学生分组讨论计算,汇报情况)
生1:10002.43%2=58.6(元)
生2:10002.43%2=58.6(元)
58.620%=11.72(元)
58.6-11.72=46.88(元)
生3:10002.43%2=58.6(元)
58.6(1-20%)=46.88(元)
师生集体讨论订正,教师强调利息的计算方法。
师:储蓄到期时,张大妈实际领取本金和利息一共是多少?
生:1000+46.88=1046.88(元)
师生总结计算方法。
2、巩固新知学生进行练习
五、课后实践、体验储蓄过程
师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,我们下节课继续交流讨论。
教学与反思:
本节课的教学设计能根据新的《课程标准》理念的要求,结合学生的生活实际,力求体现了以下几点教学思想:
一、关注学生发展,整合教学目标
新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。
二、联系实际应用,重组教学内容
长期以来,教学内容都是教师在遵循教材和大纲的基础上确立的,教师只关注教材、大纲和教学参考资料,忽视了学生的生活实际和生活背景,学生接受的归根到底只能算是数学知识。这种数学知识不能服务于学生的生活,更不能促进学生的发展。因此我们在教学中一定要加强课程内容与生活以及现代社会科技发展的联系,关注学生的兴趣和经验,精选终身学习必备的基础知识和技能。本节课充分联系学生的实际生活应用,重组教学内容,将课前调查、课后实践、怎样填写储蓄凭条、怎样设置密码等知识和本节课教学内容利息组合在一起。使学生在实际的应用中经历了储蓄的过程,充分理解了有关利息的知识。并在相关问题的解决中,相应地获得了终身发展必备的知识和技能。
三、培养学生能力,开放教学过程
学生各种能力的形成和发展是我们教学的首要任务。传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。本节课根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。课前让学生分组进行有关储蓄知识的调查,搜集有关相关的信息,这样培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力;课堂教学时让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力;课后又要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。
四、针对学生差异,实施多元评价
《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。
教学内容
人教版《义务教育课程标准实验教科书数学》六年级上册
教学目标
1.使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2.使学生在活动中培养初步的动手操作能力和空间观念。
3.结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、复习导入
师:这一节课我们来研究有关周长的问题。
出示正方形
师:看屏幕,认识吗?
师:这是一个(正方形)
师:谁来指一指它的'周长
生上台指。
师完整指:正方形4条边的总长就是它的周长。
出示圆
师:继续看,这是。
生:圆
师:圆的周长你能指一指吗?
生上台指
师:我们一起来指一指!从一点开始,绕一圈,回到这一点里结束。看清楚了吗?(出示动画)
师:围成圆一周曲线的长度就是圆的周长
【板书:圆的周长】
二、感知化曲为直
1、师:2个图形,分别为1号和2号。(给图形标号。)
师:给你一把直尺,(慢慢的拿出来)。让你通过测量得到它们的周长,【板书:量】你愿意测量几号?
师:想想,用手势1或者2告诉老师……怎么想的?
……
师:对,正方形是由线段围成的,可以用直尺直接测量。
而围成圆的——是一条曲线【板书:曲】,直接量确实不太方便。
师:不过呢,老师今天就是要为难一下你们,要求用直尺直接量出圆的周长,这可是要想办法的哦!敢不敢挑战?
2、用直尺测量圆的周长
(1)荧光圈
师:看,什么?(圆形的荧光圈)怎样量它的周长?
生:把接头拔下来,拉直了量。
师:像这样!断开,拉直测量!
把接头部分去掉,这一段的长就是荧光圈的周长。
这个方法很不错哦!
(2)飞镖盘
师:继续挑战!第二样,什么?(圆形的飞镖盘)能拉直量吗?
怎么办呢?
生:用线绕。
课件演示:线贴紧圆绕一周,多余部分去掉或者做上记号,然后把线拉直测量,这一段线的长就是圆的周长。
师:还有其他办法吗?
生:滚
一、学生基本情况分析:
本期我担任的数学教学工作。七(5)班共有50名学生,通过小学的升学成绩来看,学生的数学成绩较好,不及格的同学较少;在学习习惯上,部分学生的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化。在近日的学习中,后面的学生掌握的非常不好,可能是刚开学还没有完全适应过来,或初中知识比小学的难度大一些。总之,我会和孩子们共同努力,提高他们的学习能力和学习成绩。
二、教材基本结构分析
本学期初一数学教学工作共分为6章。
第一章丰富的图形世界
第二章有理数及其运算
第三章代数式
第四章平面图形及其位置关系
第五章一元一次方程
第六章生活中的数据。
三、教材的重点、难点
1、利用图形来解决简单的实际问题。
2、认识并能字母表示算式,初步认识角并解决实际问题。
3、了解一元一次方程的“消元”思想初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。
4、培养学生的逻辑推理、逻辑思维能力和计算能力,培养学生的。合作交流意识和实践创新能力。总之在每一章中都要与学生一起认真的来研究学习。
四、提高教学质量的主要措施:
1、做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。
2、兴趣是最好的老师。激发学生的兴趣,给学生介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。
3、挖掘数学特长生,发展这部分学生的特长,使其冒尖。
4、以学生发展为本,注重学生个性的养成,潜能的开发,能力的培养和智力的发展。
5、在注重基础知识、基本技能的同时,注意培养学生自主学习的良好习惯,让学生全面发展。
6、在教学中注意既要使用好教材,又要走出教材,同社会实践相结合。
7、强调在实践中学习,在探索发现中学习,在合作交往中学习。
8、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐进步。
9、重在发现和肯定学生身上所蕴涵的潜能,所表现出来的闪光点,鼓励学生的一点小进步。
五、教学进度安排:
一、教学目标
1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;
3、情感目标:向学生渗透数形结合的思想。
二、教学重难点
教学重点:数轴的三要素和用数轴上的点表示有理数。
教学难点:有理数与数轴上点的对应关系。
三、教法
主要采用启发式教学,引导学生自主探索去观察、比较、交流。
四、教学过程
(一)创设情境激活思维
1、学生观看钟祥二中相关背景视频
意图:吸引学生注意力,激发学生自豪感。
2、联系实际,提出问题。
问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
师生活动:学生思考解决问题的方法,学生代表画图演示。
学生画图后提问:
1、马路用什么几何图形代表?(直线)
2、文中相关地点用什么代表?(直线上的点)
3、学校大门起什么作用?(基准点、参照物)
4、你是如何确定问题中各地点的位置的?(方向和距离)
设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。
问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?
师生活动:
学生思考后回答解决方法,学生代表画图。
学生画图后提问:
1.0代表什么?
2、数的符号的实际意义是什么?
3.-75表示什么?100表示什么?
设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。
问题3:生活中常见的温度计,你能描述一下它的结构吗?
设计意图:借助生活中的常用工具,说明正数和负数的`作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。
问题4:你能说说上述2个实例的共同点吗?
设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。
(二)自主学习探究新知
学生活动:带着以下问题自学课本第8页:
1、什么样的直线叫数轴?它具备什么条件。
2、如何画数轴?
3、根据上述实例的经验,“原点”起什么作用?
4、你是怎么理解“选取适当的长度为单位长度”的?
师生活动:
学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。
设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。
①数轴的定义。
②数轴三要素。
练习:(媒体展示)
1、判断下列图形是否是数轴。
2、口答:数轴上各点表示的数。
3、在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小组合作交流展示
问题:观察数轴上的点,你有什么发现?
数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。
设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。
(四)归纳总结反思提高
师生共同回顾本节课所学主要内容,回答以下问题:
1、什么是数轴?
2、数轴的“三要素”各指什么?
3、数轴的画法。
设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。
(五)目标检测设计
1、下列命题正确的是()
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。
3、画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。
五、板书
1、数轴的定义。
2、数轴的三要素(图)。
3、数轴的画法。
4、性质。
六、课后反思
附:活动单
活动一:画一画
钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?
活动二:读一读
带着以下问题阅读教科书P8页:
1、什么样的直线叫数轴?
定义:规定了_________、________、_________的直线叫数轴。
数轴的三要素:_________、_________、__________。
2、画数轴的步骤是什么?
3、“原点”起什么作用?__________
4、你是怎么理解“选取适当的长度为单位长度”的?
练习:
1、画一条数轴
2、在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5
活动三:议一议
小组讨论:观察你所画的数轴上的点,你有什么发现?
归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
练习:
1、数轴上表示-3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。
2、距离原点距离为5个单位的点表示的数是________。
3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。
附:目标检测
1、下列命题正确的是()
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出-5和+5之间的所有整数。列举到原点的距离小于3的所有整数。
3、画数轴,观察数轴,在原点左边的点有_______个。
学习目标:
知识:对顶角邻补角概念,对顶角的性质。
方法:图形结合、类比。
情感:合作交流,主动参与的意识。
学习重点:
对顶角的概念、性质。
学习难点及突破策略:
“对顶角相等”的探究;小组讨论
教学流程:
【导课】
同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。
【阅读质疑,自主探究】
请大家阅读课本P,回答以下问题(自探提纲):
1、两条相交的直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的位置关系?存在怎样的大小关系?
2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?
3、对顶角有什么性质?你是怎样得到的?
【多元互动,合作探究】
同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的`第2问,最后老师强调:
1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。
2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。
3、“对顶角相等”的推导过程。