通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数。强调数学的严密性,
一、教学目标
(一)知识与技能
让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
(二)过程与方法
结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
(三)情感态度和价值观
让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国主义教育。
二、教学重难点
教学重点:结合现实情境理解负数的不同含义。
教学难点:结合现实情境理解负数的不同含义。
三、教学准备
课件。
四、教学过程
(一)谈话激趣,导入新课
1.同学们,你们在生活中见过负数吗?你知道它的含义吗?
2.究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负数(揭示课题)。
【设计意图】开门见山直入主题,在谈话中了解学生的认知基础,激活学生的生活经验。
(二)结合情境,理解意义
1.初步感知负数
(1)课件出示教材第2页例1。
下面是中央气象台1月21日下午发布的六个城市的气温预报(201月21日20时—年1月22日20时)。
教师:请仔细观察,说说你有什么发现?
预设:①哈尔滨的最高气温是零下19℃,最低气温是零下27℃;海口最热,最高气温是23℃……②-12℃表示零下十二摄氏度(读作负十二摄氏度);零下温度在数字前加“-”……
(2)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
预设:①-3℃表示零下三度,3℃表示零上三度;②它们表示的意义相反;③先找0℃,往下数三格表示-3℃,往上数三格表示3℃。
(3)0℃表示什么意思?
预设:①0℃表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上温度和零下温度的分界线。
小结:比0℃低的温度叫零下温度,通常在数字前加“-”(负号)。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
(4)请在温度计上表示-18℃,比一比-3℃和-18℃哪个温度低?
【设计意图】利用学生熟悉的气温引入负数,初步了解负数的读写方法,体会0的特殊性,并通过提问“-3℃和3℃表示的意思一样吗?”引导学生初步感知用正数、负数表示两种相反意义的量。
2.认识正负数
(1)课件出示教材第3页例2。
教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些数各表示什么?
预设:①.00表示存入2000元;②500.00和-500.00的意义恰好相反,一个是存入500元,一个是支出500元。
(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生活中还有许多。你能举出这样的实例吗?
预设:水面上升2米、下降2米;乘车时上客5人、下客6人;货物运进200吨、运出150吨……
(3)我们怎样来表示像这样两种相反意义的量呢?
教师:为了表示两种相反意义的量,需要用两种数。一种是我们以前学过的数,如3、500、4.7、
,这些数是正数;另一种是在这些数的前面添上负号“-”的数,如-3、-500、-4.7、-
等,这些数是负数。那么0是什么数呢?(0既不是正数,也不是负数,它是正数与负数的分界线。)
(4)基本练习(课件出示教材第4页“做一做”第2题)
请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。
【设计意图】在具体生活实例中让学生体会负数产生的必要性,认识正数、负数,初步建立正数、负数的概念。同时在出示的负数中有-7、-5.2、-
,让学生感知负数中有负整数、负分数和负小数。
(三)回归生活,拓展应用
教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接着看一看!
1.课件出示教材第6页练习一第1题。
(1)学生独立完成,集体反馈。
(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?
2. 课件出示教材第6页练习一第5题。
(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。)
(2)独立完成,集体反馈。
(3)你知道你所在城市的海拔高度吗?说说它的具体含义。
3.课件出示教材第6页练习一第2题。
(1)仔细读题,说说你知道了什么信息?
(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?
(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗?
(4)你还知道此时其他时区的时间吗?试着表示出来。
4.课件出示练习题。
某食品厂生产的120克袋装方便面外包装印有“(120±5)克”的字样。小明购买一袋这样的方便面,称一下发现117克,请问厂家有没有欺骗行为?为什么?
(1)说说你知道了什么信息?
(2)“120±5”表示什么意思?
(3)如果120克记作0克,117克可以记作多少克?
【设计意图】通过生活中的信息,让学生学习用正数、负数表示两种具有相反意义的量,丰富了对正数、负数意义的理解。
(四)了解历史,课堂总结
1.课件出示教材第4页“你知道吗?”内容。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下。
(1)看了介绍,你对负数又有什么新的认识?
(2)你有什么感受?
【设计意图】用图文结合的方式向学生介绍负数的发展史,让学生体会负数发展的历程和中国在负数发展上做出的贡献,激发学生的民族自豪感,进一步丰富学生对负数的认识。
2.这节课你有什么收获?
教师:关于负数,生活中还有更多的知识等待我们去探索,只要同学们做善于观察的有心人,在今后的生活和学习中会有更多的收获。
《负数的认识》教学设计
[教学目标]:
1、在熟悉的生活情境中,产生学习负数的必要性,了解负数的意义,会正确地读、写负数。
2、知道0既不是正数,也不是负数。
3、会读写温度,会比较两个温度的大小。
4、感受正、负数和生活的密切联系,享受创造性学习的乐趣。
[教学重点]:
了解正、负数的意义,应用正、负数表示生活中具有相反意义的量。
[教学难点]:
了解负数的意义及0的内涵,会比较两个温度的大小。
[教学准备]:
记录表,电脑课件等。
[教学过程]:
一、利用生成资源,体验负数产生过程
(一)提出问题,亲身体验
师: 同学们每天我们都要跟数打交道,你们对学过的数熟悉吗?
老师说几件事,你们能把听到的数据信息准确地记录下来吗?请选择自己喜欢的方式记录在表格上,关键是让别人一眼就能看懂你要表达的意思。 足球比赛,中国国家队上半场进了2个球,下半场丢了2个球。
②学校四年级共转来25名新同学,五年级转走了10名同学。
③张阿姨做生意,三月份赚了6000元,四月份亏了元。
学生独立填表,教师巡视收集信息。
(二)有序反馈,集体讨论
师:这样记录,大家有什么看法?(在投影上展示第一种情况。
)
生:这样无法看出是进2个球还是丢2个球。
师:都是2个球,但一个是进球,一个是丢球,意思正好怎么样?(转来和转走的意思呢?赚和亏呢?)仅仅用我们学过的数,还能区分这些意义相反的量吗? 有的同学想出了其他方法,我们一起来看。
师生交流第二种情况
师生交流第三种情况(可能不会出现这种情况)
师:快说说你怎么想到这两个符号?
生:我认为张阿姨赚6000元心里肯定特别高兴,所以用笑脸表示;而亏了2000元就用哭脸,表示她心里很难过。(其他学生发出会心的笑。)
师:看得出来,大家很欣赏这种方法。像这样用符号表示的方法还有呢?(师随即展示其他同学使用的不同符号。)同学们的想法都很有创意。可不知同学们想过没有,你用的符号你明白,他用的符号他明白,我用的我明白,但是,数学符号是数学的语言,是帮助我们相互交流的,怎样才能让大家都明白呢? 生1:需要找到一种大家都能看懂的符号。
生2:需要找到一种统一的形式。
师生交流第四种情况
师:这是哪位同学记录的?快说说你的想法。(这位同学真了不起,你的'做法和数学家的是一样的,这种表达有什么好处?)
小结:现在人们就是用这样的数来区分意义相反的量。想上面这样的数都是什么数吗?
生1:正负数
师:板书正数负数
二、认识负数
1师:板书,把六个数分两类,板书在黑板上,会读吗?并让生起读。 师:很明显,这里用到的+号与-号在这里又有了想的意义,正号与负号
2快速抢答:师出示-7
+4.1 35
讨论35是什么数。 +4\5 -5.2-1\3
师:为了简便,+35可简写成35,如果去掉正号,这些数你们熟悉吗?负数前面的负号能去掉吗?
刚才通过分析与讨论我们已经认识了正数与负数,关于正数与负数的认识我们中国有着悠久的历史。古代人遇到这样问题时也想出了不同的方法。想了解下吗?
3一起走进负数的历史,出示小资料,看到这,你有什么感受?
师:"(是啊,我们的祖先早在2000多年前就发现了负数,比西方国家
要早数百年,身为中国人,我们应该感到无比荣耀)而刚才同学们通过自主学习,也发现了生活中的负数,老师更为你们感到骄傲."
接下来的时间就到我们自己的生活中了解负数,认识负数,好不好。(完整板书)
你在生活中哪儿见到过负数吗?生举例,师出示计算器、存折、电梯和天气预报里的负数。
(二)重点理解,体会负数
1、温度的读法
课件出示:这是二月份某天的气温情况:
上海:0℃——8℃ 北京:-5℃——5℃ 哈尔滨:-15℃——-3℃ 谁愿意当小播报员,来播报这3个城市的气温?
生读:零摄氏度——(零上)八摄氏度零下五摄氏度——(零上)五摄氏度
零下十五摄氏度——零下三摄氏度
他把负数的温度读做零下几摄氏度,你读的和电视台的主持人一样规范。 还有不同读法吗?
生读:负五摄氏度 负十五摄氏度 负三摄氏度
他们读的有什么不同?两种读法都可以吗?
2、0度的理解
北京气温中的-5℃和5℃,这两个5表示的温度一样吗?(不一样,一个是正数,一个是负数)或(不一样,一个在0℃以下,一个在0℃以上)他比得很有特点,都在跟谁比?(0℃)在0上的是正数,在0下的是负数,
看来先确定0的位置很重要。0上的是正数,0下的是负数,这说明0是正负数的?
(看来0刚好是正数和负数的分界点) 板书:0
师:那气温是0度的时候是什么感觉啊?(课件出示:瑞典的科学家摄尔休斯把水结冰的温度定为0摄氏度。这几天我们这里的温度如何?当温度降到0摄氏度,你的手里也捧着冰时,你有什么感觉?)
3.在温度计上拨出-5---5
师:测量温度常用的工具是什么?介绍温度计(出示教具)这是一个大号的摄氏温度计,一个小格代表1摄氏度,中间红色的这一稠带代表水银柱,上下可以动,你们能在温度计上表示温度吗?同学们想想看,刚才这些温度如果在温度计上如何表示呢?
师:谁能把5摄氏度表示出来?(请一生上来拨一拨,并说拨的过程) -5摄氏度的位置也表示出来吧。怎样才能把-5的位置表示出来呢?怎样才能表示出0下的温度呢?
在这样温度计上即要能表示出0上的温度,又要表示出0下的温度,先得找到谁的位置?
师:“为什么要先确定0摄氏度的位置?”老师再把温度计上表示出刻度。 再让生拨一拨,
(2)-15℃和-5℃
再拨出-15℃,将-15℃和-5℃比较, -15℃和-5℃哪个更冷?
你怎么知道?(零上的是数字越大越暖和,零下的是数字越大越冷) 课件出示哈尔滨的冰雪图,想象一下如果此时你站在哈尔滨的冰雪大世界里,-15℃的温度,你会有什么感觉?用动作或表情表示一下
(3)最冷的温度
这还不是中国最冷的地方呢!中国最冷的地方在漠北地区:-52.3℃
如果在这张温度计上再画下去,大约在哪里?比划一下
你知道世界上最冷的地方在哪里吗?南极-94℃ 北极-74℃
在温度计上大概在哪个位置
你知道中国最热的地方在哪里吗?新疆的吐鲁番 摄氏46多度吧
在温度计上大概在哪个位置
三、结合具体情境,渗透数学思想
(1)整理范围 对于黑板上的这些数,可以怎么分类?
刚才我们在温度计上了解了一些正数负数,你还能再说几组正数和负数吗?举得完吗?那用一个什么符号表示?说明什么?
正数的个数是无限的,负数的个数也是无限的。
(2)比较大小:假如老师把温度计横着放了,这就像一条数轴,中间是0(板书:0)
①在数轴上,0的右边都是什么数?越往右的数会怎样?
0的左边都是什么数?越往左的数会怎样?
那所有的正数跟0比的话有什么关系;那么所有的负数跟0比呢? ②负数、0、正数三者比较,谁大谁小?
板书:负数<0<正数
四、在情境中提升对正负意义的理解
下面我们就应用今天所学的知识来解决一个实际问题。
1、王叔叔要到5楼开会;李阿姨要去地下一层停车场取车,他们分别要按哪个键?
2、通常我们规定海平面的海拔高度为0米,
珠穆朗玛峰的海拔高度记作( )米,
吐鲁番盆地的海拔高度记作( )米。
3、下图中,每个小格为1米,小华刚开始的位置在0处。
数学认识负数教学设计
教学目标
1. 使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。
2. 使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。
教学重点
知道正数、负数和0之间的关系。
教学难点
在现实情境中了解负数的产生与应用。
教学过程
课前游戏
(1)对接反义词(师说:前。生答:后)。
(2)教师做动作,学生对相反意义的动作。
引入谈话:在生活中,也有许多类似的意思相反的情况存在,今天这节课,我们将研究如何用数学的方法表达这些内容。
一、初步认识负数,教学读写方法
1. 情境引入:中央电视台天气预报节目片头。
出示例1:上海、南京和北京图片及温度计图。
提问:从图中你能知道些什么?
学生可能说出:每个城市的气温或两个城市气温之间的比较。
追问:你是怎样知道每个城市气温的?你是怎样看温度计的?
引出摄氏度℃和华氏度?埘的介绍,说明我国是用摄氏度来计量温度的。
引导:上海和北京的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?
请会的学生介绍写法、读法。同时在图片下方出示:4 ℃(+ 4 ℃) - 4 ℃
追问:你怎么知道的?
小结并板书:“+ 4”这个数读作正四,书写这个数时,只要在以前学过的数4的前面加一个正号,“+ 4”也可以写成“4”;“- 4”这个数读作负四,书写时,可以写成“- 4”。
[说明:“零上4摄氏度”和“零下4摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的提出,让学生感受到过去所学的`数在表达相反意义的量时的局限性,产生学习新数的需求。同时,学生已有的生活经验,使他们能很快联想到在“4”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。]
2. 巩固气温的表示方法。
练习第2页的“试一试”。
介绍:气候状况与地形特点、海拔高度等有关。
二、进一步认识负数,了解正、负数与0的关系
1. 课件出示例2直观图,介绍海拔高度的含义:海拔高度是指某地与海平面比较,得到的相对高度。(同步出现与海平面的比较)
提问:你从图中能知道些什么?
要求:你能用今天所学的知识表示这两个海拔高度吗?
学生尝试表达,并说含义。
小结:以海平面为基准,比海平面高8 844.43米,可以记作:+ 8 844.43米;比海平面低155米,可以记作:-155米。
2. 归纳正数和负数。
小结:我们用这些数分别表示零上和零下的温度以及海平面以上和海平面以下的高度。(课件同时呈现:温度计和海拔高度图,其中0℃和海平面用红色线标出)
[说明:教师将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。零度以上、海平面以上为正数,反之,则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。]
引导:观察这些数,你能把它们分类吗?
请学生移动贴纸独立分类,汇报。
提问:你为什么这样分?
学生可能出现:
① + 4、19、+ 8 844.43表示的都是零度以上的气温和海平面以上的高度,- 4、- 11、- 7、- 155表示的都是零度以下的气温和海平面以下的高度。
② + 4、19、+ 8 844.43都大于0,- 4、- 11、- 7、- 155都小于0。
小结:像+ 4、19、+ 8 844.43这样的数都是正数,像- 4、- 11、- 7、- 155这样的数都是负数。正数都大于0,负数都小于0。(完成板书)
3. 练习。
教学目标
1、在熟悉的生活情境中,进一步体会负数的意义。
2、会用正负数的有关知识解决简单的实际问题,知道正负可以互相抵消,会解决正负相差的问题。
3、进一步培养学生的观察,分析,提出问题和解决问题的能力。
教学重难点
进一步体会正负数表示的是具有相反意义的量,能运用抵消的思想处理数学问题。
教学准备
课件,练习纸
教学过程
(一)游戏感知正负数可以互相抵消。
1、师生游戏
师:同学们,剪刀石头布的游戏玩过吗?(玩过)好,我们就来玩玩,谁愿意和我玩?
(师生游戏,其它学生当裁判,并要求做好记录)
师:谁来说说你的记录结果,�
【联系学生实际,创设情境,体验负数在生活中产生的必要性,调动学生学习的自主性和能动性。】
(师生共同记录比赛成绩)
师:现在我俩的得分分别是多少?
师:你是怎样想?
生:+1和-1可以互相抵消?
师:抵消是什么意思?抵消的结果是多少?
2、生生游戏
师:你们想自己玩一次吗?两人一组,3局定胜负,必须有一人记录成绩。
(学生活动)
(反馈比赛结果)
3、深入了解抵消的应用
师:如果老师想反败为胜,�
师:除了像+1和-1,+2和-2这样的数相抵消结果为0,你还能举出这样的例子吗?
师:+5和-3,-5和+3还能互相抵消吗?
小结:意义想反的两个数,我们可以用正负数来表示,把正数和负数合并起来,我们可以采用抵消的方法进行计算。
【让学生在游戏中体验正负数的意义,理解抵消在正负数计算中的应用,从而使机械的数学计算变得有趣。教师在数学学习中只是起着组织者、引导者、合作者的作用。】
(二) 从时间轴上求正负数的相差数。
(课件出示:天宫神八交会对接)
师:从这张图片你看明白了什么?
师:你知道太空人两餐相差多长时间吗?
师:你还能提出新的问题吗?
(三)综合运用知识,解决正负数问题
师:生活中除了赢分和输分这样的量可以用正负来表示,你还能举出这样的例子吗?
师:正负数在生活中的应用很广泛,只要你用心感受,那么它就在你的身边。
(课件出示:一个11岁儿童的标准身高150厘米我们把它记作0,想一想你的身高是多少,应记作什么?)
(学生思考后,全班反馈)
出示表格:
负数是过去小学数学里没有的内容,本节课结合现实情境教学负数的意义,让学生初步认识负数,学会读写负数,理解正数、负数和0之间的关系。
目标预设
1.让学生在熟悉的生活情境中初步了解负数,知道负数和正数的读、写方法,知道0既不是正数,也不是负数,正数都大于0,负数都小于0。
2.使学生初步学会用正数、负数描述现实生活中一些简单的具有相反意义的量,进一步加深对负数的认识。
3.让学生经历创造符号表示相反意义量的过程。
4.通过介绍古代中国认识和使用负数的情况,使学生体会到中国古代文明对于数学发展的卓越贡献,激发民族自豪感。
重点、难点
理解负数的意义,掌握正数、负数和0之间的关系。
设计理念
本堂课注重寻找尽可能多地承载负数本质意义而又具体直观的数学模型,以顺应从具体直观到抽象的人类认识的提升规律;注重沟通负数和0之间的关系,以避免形成以后学习的认识障碍。
设计思路
首先,由两个数“1”和“2”写出一些算式,引出问题1-2=?,创设了一个开放的、纯数学的教学情境,激起学生学习负数的需要和兴趣。然后让学生通过生活经验中的相反意义的量,自主创造出负数的表示方法,接着通过课本例1、例2的教学,理解负数的意义以及负数的读、写方法,最后通过与生活链接,内化学生对负数两层意义的理解。
教学过程
一、提示冲突激发需要
1.请同学们用1、2这两个数组成尽可能多的加法和减法算式。(学生独立思考完成后,教师让学生汇报得出如下算式:)
加法:2+1=3 1+2=3
减法:2-1=1 1-2=?
2.1-2等于多少?有谁知道?这已经不能用我们所学的数来表示了,它应该用我们今天所学的新数来表示。(可能有些同学知道用负数表示)
师:这会儿,有些同学可能有想法了,我们已经认识了无数个数,为什么还要学习一种新数呢?其实,不仅1-2等于多少有这样的要求,还因为生活给我们提出了这样的要求。
(设计意图:数学发展扎根于现实生活,还扎根于数学自身内在发展的需要,根据数学自身内在发展的需要,由两个数“1”和“2”写出一些算式,引出问题,创设了一个开放的、纯数学的教学情境,符合学生的认知发展规律,有利于学生形成新的认知结构,这样引入简洁、高效,更为学生理解负数是因运算而出现的新数,有了负数,才能实现加减运算的封闭,作了很好的铺垫。)
二、联系生活自主探究
1.课件出示情境:两辆公交车分别有4人上车和4人下车。
老师把图中3号车上车4人、5号车下车4人表示成这样(如下图)你觉得是不是已经把图意表达清楚了?为什么?
上下车的情况
3号车
4人
5号车
4人
生:没有,看不出到底是上车4人还是下车4人。
师:也就是说虽然都是4人,但两个4人表示的实际意义是相反的。它们是一组具有相反意义的量(板书:相反意义)。那么你能用自己的方式把它们区别开吗?共3页,当前第1页123
2.交流大家的想法。
3.介绍人类探究的历程并比较各种表示方法。
师:相反意义的量怎么表示,历史上的数学家在这个问题上浪费了很多周折,他们想了各种各样的方法。例如用不同的颜色来区分,画斜杠来表示,加不同的学号表示。(讲解出示历史上的各种写法,+、-的表示法也出示在其中)
师:怎么样,是不是和我们刚才想得差不多。真是方法各有各的不同,但道理是一样的,那就是我们以前学的数已经不够用了。我们需要寻找一种新的表示方法。哎那么多写法中,你觉得哪种写法的数学味最浓呢?
师:对,就是这个道理,20世纪初,这种表达的方式得到了大家的认可,所以一直沿用至今。但读法上有了变化,分别读作正3和负3,符号分别叫正号和负号。
4.试一试:下面的两个量是一组具有相反意义的量,请用“+”或“-”的方法表示它们。(小黑板出示)
(1)六年级上学期转来6人,本学期转走6人。
(2)张阿姨做生意,二月份盈利1500元,三月份亏损200元。
(3)水面上升0.3米,水面下降0.2米。
(4)与标准体重比,小明重了2.5千克,小华轻了1.8千克。
5.概括:为了表示具有相反意义的量,今天我们接触了一种新数,称之为负数,前面的符号就叫做负号。而原先那些数就叫做正数,前面的符号自然就叫正号。
6.你们还能再说出一些正数和一些负数吗?能举得完吗?
(设计意图:生活中具有相反意义的量,一个用正数表示,一个就用负数表示,就负数概念而言,其经验性表现为负数可以用来记录生活中的相反意义的量,学生没有生活经验的积累,就会难以在生活经验层面上使用负数,引导学生初步认识负数,应首先帮助学生建立充分的感性认识,在此基础上才能再进行对负数的理性认识,所以,教者先从相反意义的量入手教学)
三、沟通联系丰富认识
同学们,由于生产和生活的需要,人们又创造了负数。下面让我们一起走进生活进一步认识负数。(提示课题:认识负数)
1.教学例1。
(1)电视台每天都会播放天气预报,你们知道是用什么来测气温的吗?(课件出示温度计)
观察温度计上数字的排列有什么规律?
(课件突出两个刻度4)这两个4表示的温度一样吗?为什么?
(2)你会用今天学习的正数、负数分别表示这两个刻度所指的温度吗?
师:温度计是通过水银柱的高低变化来表示气温变化的。带有箭头的直线大家并不陌生吧,在下面的直线上,你觉得在0左右两边的两个点,哪个点表示+4?哪个点表示-4呢?说说你的想法。同桌之间可以通过讨论来完成。
(讨论结束后,小组代表汇报)
(课件出示显示香港18℃、北京-8℃、哈尔滨-12℃的温度计)同学们能试着在带有箭头的直线上大致找出三个点,分别来表示-8、-12、18吗?说说你们的理由。
随学生的回答出示下面的数轴。
师:看着这条直线和直线上的数,你能围绕今天学习的内容说一句话吗?在学生发言的基础上,小结:负数都在“0”的左边,正数都在“0”的右边;负数都比0小,正数都比0大;“0”是正数和负数的分界点。
(设计意图:让学生在数轴上找点,不仅有数值大小的比较,还有位置的选择、倍数关系的估计等,虽然难度较大,但是,学生借助前面正负四的初练,加之每一个数的大小还有着温度计的形象提示,大部分学生都可以完成。这一环节既为已学知识进行了初步的整理和概括,更为下一课以及在初中学习数轴上正负数的大小、排列、运算作了很好的渗透)共3页,当前第2页123
2.教学例2.
在我国的新疆吐鲁番盆地,一天当中温差很大。看温度计说说那里早晨、中午、晚上的温度。
吐鲁番这种独特的气候特点是由它特殊的地理位置造成的。(课件出示吐鲁番盆地)吐鲁番盆地大约比海平面低155米。(课件介绍海平面)
(课件出示珠穆朗玛峰)珠穆朗玛峰的海拔高度是多少米?
海平面以上用什么数表示的?海平面以下呢?那海平面的高度又该用哪个数表示呢?
0是正数吗?是负数吗?它是正数和负数的什么?
(设计意图:在学生初步认识负数的过程中,如果只在生活经验的层面上积累正、负数是表示具有相反意义量的经验,并不能给以后负数的理性学习带来多大价值。初步认识负数,不能仅仅停留在生活层面,更应上升到数学的高度。所以,通过课本两个例题的教学,既尊重了教材,沟通与生活的联系,又加深了学生对负数意义的理解,很好地体现了学生在“在数学的理性世界中”学负数)
四、链结生活,内化理解
生活中除了温度、海拔高度,还有很多地方会用到负数。
1.电梯中的负数:王叔叔和李阿姨都从办公楼的地面一层乘电梯,王叔叔去5楼开会,李阿姨去地下二层取车,他们分别应该按电梯里的哪个键?
2.神七与负数:我国即将发射的神舟七号飞船在太空中向阳面的温度会达到( )以上,而背阳面会低于( ),但通过隔热和控制,太空舱内的温度能始终保持在( ),非常适宜宇航员工作。
(1)21℃ (2)100℃ (3)-100℃
3.叔叔下楼:李叔叔在5楼,他从5楼往上2层记作+2层,那么从5楼往下1层,记作( )层。李叔叔在2楼往上2层,可以记作( )层;同样是4层,为什么一会儿被记作-1层,一会儿被记作+2层。
4.球的重量:4只球的称重并和标准重量比较后记录为:1号球-0.35克、2号球0克、3号球+0.7克、4号球-0.2克。2号球真的就重0克吗?几号球最重?为什么?
5.你现在能表示出“1-2”的结果吗?试一试。
(设计意图:将课本上的例题内容与作业练习进行有效整合、灵活处理。设计了生活味、思考性极强的习题,不仅具有层次性,更具有深刻性。学生通过联系自己的生活实际,调动已有的知识经验,灵活运用所学知识解决问题,加深了学生对0的新意义,负数概念的两层含义及正、负数相反意义的相对性理解)
五、全课总结课外延伸
同学们,生活中的负数还远远不止这些,课后多留心观察,下节课请同学们来交流,好吗?
学习目标
1.在熟悉的生活情景中,进一步体会负数的意义。
2.会用负数表示一些日常生活中的问题,知道正负可以相互抵消。
导学策略
导学法、尝试法
教学准备
学生收集邮政编码数据资料。
导学流程设计:
教师预设
学 生活动
一、 复习上节课的内容。
1、说说数字的作用。
2、提问:你在现实生活中哪些数字?举例说明。
二、揭题。
今天我们来认识新的一种数字---负数
三、出示例子。
六(1)班和六(2)班比赛。看比赛记分办法。出示记分规则和记分办法。
(1)、学生认识负数。
(2)、说说负数和正数的关系。(重点是1和-1可以抵消。)
(3)、说说各班的得分
(4)、回答第(2)小题。
(5)、教师小结。
四、试一试
1、请同学们看第73页第1小题的问题,相互讨论一下,然后在全班交流一下。
让学生说说自己对问题的思考结果,全班交流。
2、加深认识看第70页第2小题的`问题,请学生在书中完成题目。
五、练一练
先学生自己独立完成,再小组讨论交流。
再全班交流。
教师小结。
六、课堂小结
这节课学习了什么?你学到了什么?�
学生复习上节课的内容。
学生读例子。
学生认识负数。
同学们看第73页第1小题的问题,相互讨论一下,然后在全班交流一下。让学生说说自己对问题的思考结果,全班交流。
学生完成题目。
学生练一练。
先学生自己独立完成,再小组讨论交流。
学生小结。自己评价自己。
达标情况分析:好
教学心得体会:学生作业完成情况较好。
一、内容和内容解析
1.内容
正数和负数的意义。
2.内容解析
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析
1.教学目标
(1)体会引入负数的必要性;
(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2.目标解析
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;
(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时 突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计
1.创设情境,引入新知
教师展示教科书图1.1-1,并提出
问题1 哪位同学知道这些图片介绍的是什么内容?
学生回答。教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要。
问题2 请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?
学生思考并尝试解释。对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述。
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。
2.观察感知,理解概念
问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
学生回答,给出正确答案后,教师给出正数、负数的描述性定义:
大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。
问题4 阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗?
学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。
【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。
3.例题示范,学会应用
例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率。
提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,� 估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的。体重增长值为负数,相当于体重减少。
再提问:你能仿照第(1)题的解答,自己解决(2)吗?
【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?
学生总结,师生共同补充、完善。要总结出:
(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;
(2)选定一方用正数表示,那么另一方就用负数表示;
(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;
(4)当数据没有变化时,增长率是0.
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。
问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。
【设计意图】让学生用刚刚总结出的结论解决问题。
4.巩固概念,学以致用
练习:教科书第3页练习1,2.
【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能举例说明引入负数的必要性吗?
(2)你能用例子说明负数的意义吗?
(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数。你能举例说明吗?
6.布置作业:教科书习题1.1第1,2,4,8题。
五、目标检测设计
1.以下各数2014年07月08日 - 一帆风顺 - 一帆风顺祝大家健康快乐!天天都有好心情中,正数有 ;负数有 .
【设计意图】考查对正数、负数概念的理解。
2.向东行进-50 m表示的实际意义是 .
【设计意图】会用正数、负数表示具有相反意义的量。
3.下列结论中正确的是( )
A.0既是正数,又是负数
B.O是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫。
4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义。
【设计意图】能用正数与负数表示生活中的数量。
〔教学目标〕
1、了解负数的产生是生活、生产的需要;
2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;
3、理解具有相反意义的量的含义;
4、熟练地运用正、负数描述现实世界具有相反意义的量;
5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。
〔重点难点〕
正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。
〔教学过程〕
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
2、有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?
3.2006年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?
上面三个问题中,哪些数的形式与以前学习的数有区别?
数-3、-2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。
像3、2、2.7%这样大于零的数叫做正数;像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,?就是3、2、0.5、1/3,?。
这样,一个数由两部分组成,数前面的“+”“-”号叫做它的符号,后面的部分叫做这个数的绝对值。
请你指出数-3.2,5,-2/3的符号和绝对值。
二、对数“0”的重新认识
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?数0既不是正数,也不是负数,它是正数和负数的分界。
我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
三、用正负数表示相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。
请大家看课本第3面的图1.1-2、1.1-3。
你能解释上面图中正数和负数的含义吗?
图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。
你能再举一些用正负数表示数量的实际例子吗?
通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。
四、巩固练习
五、实际问题
[投影]例(1)一个月内,小明体重增加2公斤,小华体重减少1公斤,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%。
写出这些国家2001年进出口总额的增长率。
分析:首先我们来弄清楚增长-1是什么意思?增长-6.4%是什么意思?
增长-1表示减少1;增长-6.4%表示减少6.4%。
解:(1)这个月小明体重增长2公斤,小华体重增长-1公斤,小强体重增长0公斤。
(2)六个国家2001年商品进出口总额的增长率:
美国-6.4%,德国1.3%,
法国-2.4%,英国-3.5%,
意大利0.2%,中国7.5%。
注意:在同一个问题中,分别用正数与负数表示的量具有相反的意义。[投影3]例2“牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?
分析:“+30”是什么意思?“-30”是什么意思?
解:“500±30(mL)”表示实际容量比500mL最多多30mL,最少少30mL,即在470~530之间。抽查产品的容量都在470~530之间,所以都合格。
六、巩固练习
[投影]补充题:某药品的说明书上标明保存温度是(20±2)℃,由此可知在℃~℃范围内保存才合适。
七、课堂小结
1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。
2、正数和负数起源于表示两种相反意义的量。
3、正、负数在生产、生活和科研中有着广泛的应用。
学材分析
P-75、76页
学情分析
学生用折线统计图表示出正负数的关系,和事物的变化。
学习目标
1.在熟悉的生活情景中,进一步加深对负数的意义的理解。
2.会画折线统计图描述事物的变化情况。
导学策略
导学法、尝试法
教学准备
学生收集邮政编码数据资料
导学流程设计:
教师预设
学 生活动
一、 复习上节课的内容。
1、说说正负数字的意义。
二、揭题。
今天我们结合折线统计图来进一步了解负数
三、出示例子。
看书本P-75页例子。某市水电站讯情公告。
(1)、学生读题。
(2)、说说任何画折线统计图。
(3)、说说负数和正数表示的'意思。
(4)、学生在书上完成题目。
(5)、全班交流讨论。
(6)、教师小结。
四、试一试
1、请同学们看第76页第1小题的问题,相互讨论一下,然后在全班交流一下。
让学生说说自己对问题的思考结果,全班交流。
2、加深认识看第76页第2、3小题的问题,请学生在书中完成题目。
五、练一练
先学生自己独立完成,再小组讨论交流。
再全班交流。
教师小结。
六、课堂小结
这节课学习了什么?你学到了什么?
七、作业
请学生收集一些正负数字进行分析,并说说表示的意思。并画折线统计图。
学生复习上节课的内容。
说说正负数字的意义。
学生读例子。
学生认识负数。
同学们看第76页第1小题的问题,相互讨论一下,然后在全班交流一下。让学生说说自己对问题的思考结果,全班交流。
学生完成题目。
学生练一练。
先学生自己独立完成,再小组讨论交流。
学生小结。自己评价自己
教学反思
达标情况分析:还可以
教学心得体会:多在生活中找找例子,更有利于学生掌握知识。
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。
2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形�
(2)数轴能反映数的性质。
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。
(4)数轴可使有理数大小的比较形象化。
3、对于相反数的概念,从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部分。
4、正确理解绝对值的概念是难点。
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值。
(2)有理数的绝对值是一个非负数,即最小的绝对值是零。
(3)两个互为相反数的绝对值相等,即│a│=│-a│。
(4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解。
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值。
(4)会利用数轴和绝对值比较有理数的大小。
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值。
2、难点:准确理解负数、绝对值等概念。
3、关键:正确理解负数的意义和绝对值的意义。
课时划分
1.1 正数和负数 2课时
1.2 有理数 5课时
1.3 有理数的加减法 4课时
1.4 有理数的乘除法 5课时
1.5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1.1正数和负数
第一课时
三维目标
一。知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二。过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三。情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。
八、作业布置
1、课本第5页习题1.1复习巩固第1、2、3题。
九、板书设计
1.1正数和负数
第二课时
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
一、教材分析
1、教学目标、重点、难点。
教学目标:
(1)通过实例,感受引入负数的必要性。
(2)了解正数、负数的概念。
(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量。
重点:理解相反意义的量,理解负数的意义。
难点:正确区分两种相反意义的量,并会用正负数表示。
2、例、习题的意图
通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性。通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念。
例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解。让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示。让学生进一步掌握如何用正、负数表示相反意义的数量。并理解相反意义与数量的含义。进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量。通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示。培养学生的发散思维。
补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解。
习题的设置是针对例题掌握情况的检查。教科书p5练习(2)、(3)、(4)是针对例2而设置的。补充练习1检查学生对相反意义与数量的理解。补充练习2是对例3的掌握情况的检查。
3、认知难点与突破方法:
对于相反意义及数量含义的理解,以及区分两种不同意义的量是本课的难点。在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少。再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系。强化学生分析的层次性。在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解。
用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解。
二、新课引入
通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数。强调数学的严密性。
教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的。名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%。
问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类。学生思考、交流后教师总结:整数和分数两类。
问题2:生活中,仅有整数和分数就够用了吗?
引例:学生观察前面的几幅画中用到了什么数,让学生感受引入负数的必要性。讨论这些带有符号的数在实际中表示什么意义?
在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系。
三、例题讲解
教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念。
补充例1:(1)下各数哪些是正数,哪些是负数?
-1,2.5,0,-3.14,,120,-1.732
正数前面的+号通常省略。了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)
问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解。
(2)指出(1)中的分数、整数。(为有理数的学习做铺垫)
问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题。(用正负数表示相反意义的数量)
补充例2:用正、负数表式下列各量。
(1)若把上升5m记作+5m,那么下降5m记作。
(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为
(3)向南走5000米记作-5000米,那么向北走8000米记作。
学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反。如向东的反向是向西,上升与下降,收入与支出。二是他们都是数量。
练习思考书P5观察,在此基础上让学生指出生活中具有相反意义的例子。(检查学生对相反意义的数量的理解程度。
补充例3:用适当的数值表示下列实际问题的数量。
(1)某地白天的温度是30℃,午夜的温度是零下10℃。
(2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.
(3)一商店在一小时内收入200元,又支出150元。
(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%
本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示。在解题中鼓励学生的不同思维。比如:若收入200元,记作:-200元,则支出150元记作+150元。反之,若收入200元,记作:+200元,则支出150元记作-150元。进一步加深对正、负数相反性及相对性的理解。同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示。
补充例4:解释下列各语句中表示各数量的数值的实际意义。
(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%。
(2)经过绿化,我国沙漠化土地每年增长-4.5%。
(3)某仓库上午入库货物-3500t。
(4)缆车上升了-78米。
(5)小红这次考试分数比上次增加了+2分。
(6)盈利-300元。
分析:强调负数表示的是与其具有相反关系的量。(1)降低2.3%,(2)降低4.5%,(3)出库3500t,(4)下降78米,(5)增加了2分,(6)亏损300元。
四、课堂练习:
教学目标
一、知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二、过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三、情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。
2.难点:正数、负数概念的综合运用。
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备
投影仪。
教学过程
复习提问,课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的`数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0。
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家2001年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%。
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的。意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。
巩固练习
1.课本第5页的第8题。
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。
2.补充练习。
若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。
课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。
作业布置
课本第5页习题1.1第4.5.6.7题。
教材分析
1、在前一刻《温度》的学习基础上,将要拓宽学生对正负数的认识,通过学习后,学生将要从感性认识上升到理性认识,在用这种理性认识观察生活中的负数,解决生活中的实际问题,从而提高学生应用数学知识的意识。
2、教材通过正负数在生活中的一些应用实例,引导同学们在实际生活中感受正负数在生活中的应用,理解、感受正、负数及0的意义,为进一步学习正负数打下较好基础。
学情分析
1、 第一课时《温度》的学习,学生已经了解了零上、零下温度的区别、读写方法,并形象而生动地感受了负数产生的。背景及其在生活中的实际意义和应用。
2、在学习“生活中的负数”之前,学生已经系统认识了整数和小数,并且对“分数”也有了初步的认识。知道这些已学过的数的个数都是无限的。学生由于生活经验,可能在某些地方已经知道了负数的存在。基于这样的学习起点,本节课必须在学生认知冲突产生矛盾的前提下让学生体会“负数”产生的必要性。
3、通过熟悉的生活情境让学生体会负数的意义。同时在本节课上也应尽量通过数学思想的渗透,使知识形成一个完整的结构,为今后进一步学习正、负数打下基础。
教学目标
1、知识与技能:学生通过感知正数与负数,初步体会生活中的负数是根据需要来界定的,体验具体情境中的负数;知道正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。
2、过程与方法:通过举例、尝试、探索等数学活动,初步培养学生的辨证思维能力和问题意识。
3、情感态度、价值观:激发学生对数学的浓厚兴趣和热爱,培养学生的合作意识;激发民族自豪感,渗透爱国主义教育。
教学重点和难点
1、了解正负数的意义,应用正负数表示生活中具有相反意义的量。
2、了解0的内涵
教材分析
1、在前一刻《温度》的学习基础上,将要拓宽学生对正负数的认识,通过学习后,学生将要从感性认识上升到理性认识,在用这种理性认识观察生活中的负数,解决生活中的实际问题,从而提高学生应用数学知识的意识。
2、教材通过正负数在生活中的一些应用实例,引导同学们在实际生活中感受正负数在生活中的应用,理解、感受正、负数及0的意义,为进一步学习正负数打下较好基础。
学情分析
1、 第一课时《温度》的学习,学生已经了解了零上、零下温度的区别、读写方法,并形象而生动地感受了负数产生的背景及其在生活中的实际意义和应用。
2、在学习“生活中的负数”之前,学生已经系统认识了整数和小数,并且对“分数”也有了初步的认识。知道这些已学过的数的个数都是无限的。学生由于生活经验,可能在某些地方已经知道了负数的存在。基于这样的学习起点,本节课必须在学生认知冲突产生矛盾的前提下让学生体会“负数”产生的必要性。
3、通过熟悉的生活情境让学生体会负数的意义。同时在本节课上也应尽量通过数学思想的渗透,使知识形成一个完整的结构,为今后进一步学习正、负数打下基础。
教学目标
1、知识与技能:学生通过感知正数与负数,初步体会生活中的负数是根据需要来界定的,体验具体情境中的负数;知道正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。
2、过程与方法:通过举例、尝试、探索等数学活动,初步培养学生的辨证思维能力和问题意识。
3、情感态度、价值观:激发学生对数学的浓厚兴趣和热爱,培养学生的合作意识;激发民族自豪感,渗透爱国主义教育。
教学重点和难点
1、了解正负数的意义,应用正负数表示生活中具有相反意义的量。
2、了解0的内涵
学习目标:
1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛
2、数学思考:体会数学符号与对应的思想。
3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。
重点:进一步理解正、负数及零表示的量的意义。
难点:理解负数及零表示的量的意义。
课前准备
卷尺或皮尺
教学流程安排
活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。
活动2、活动安排 使学生进入问题情境,加深对负数的理解。
活动3、举例说明 提高解决实际问题的能力。
活动4、巩固练习 掌握正数和负数。
教学过程设计
活动1
1、 给出一组数,请学生说说哪些是正数、负数。
2、 学生举例说明正、负数在实际中的应用。
师生行为及设计意图
通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。
活动2
1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。
2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)
师生行为
1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。
2、各小组派一名同学汇报完成的情况。
设计意图
通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。
活动3
问题展示
1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。
2、 20xx年 商品进出口总额比上年的变化情况是:
美国减少6.4%% , 德国增长1.3%,
法国减少2.4% , 英国减少3.5%,
意大利增长0.2 %, 中国增长7.5%,
师生行为及设计意图
在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。
活动4
1、 P6 练习
2、 总结:这堂课我们学习了那些知识?你能说一说吗?
3、 作业 P7习题1 。1 4、7、8
师生行为及设计意图
教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。
教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。
学生课后巩固、提高、发展。
1、在实际问题中,为便于记录、计算引入正、负数体会其引入情境;
2、理解正、负数表示一对具有相反意义的量,并会表示。
会用正、负数表示相反意义的量。
用正、负数表示实际生活中具有相反意义的量。
体会正、负数在实际生活中的意义。
用正、负数表示实际生活中具有相反意义的量
1、比比看谁快:
(1) 比0大的数叫___________,在___________前加上-号数叫负数;
(2) 把下列各数写入相应集合里:
-10, 6, ―7, 0, ―2.25, ― , 10%,
正整数集合{ } 负整数集合{ }
正数集合 { } 分数集合 { }
负数集合 { }
2、想一想:
例1、(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出这个月他们的体重增长值;
一、教学内容:
二、教学目标:
1、收集生活素材来渗透负数的概念。引导学生初步理解正、负数可以表示两种相反意义的量。
2、能正确地读写正数和负数,知道0既不是正数也不是负数。
3、初步学会用负数表示一些日常生活中的实际问题。对正数、0、负数之间的大小有个直观的认识。
4、感受数学在实际生活中的作用,培养自主探求新知的良好品质及实际应用能力。
三、教学重点:
体会负数在生活实际应用。理解负数的含义。
四、教学难点:
理解正、负数可以表示两种相反意义的量。
五、教学方法:
引导自主探求知识。
六、教学准备:
导学提纲、投影仪
七、教学过程:
(一)复习:
1、复印存折明细记录贴入,观察支出(—),存入(+),这一栏的数各表示什么意义?
“+”表示
“_”表示()
他们表示的意思是()
{填相同还是相反}
2、上网收索今天的天气预报,记录哈尔滨,和福州的气温数据。
哈尔滨()表示—————————————————————————————————————————————
福州()表示—————————————————————————————————————————————
它们是以()度为基准,例如:+16°表示——————————————+16°表示——————————————
—16°与—16°表示两个()意义的量。
哪个地方的气温高,哪个地方的气温低?
比较:+16°()—16°{填>,<或=}
3、带有“+”的数有—————————————叫————数
带有“—”的数有—————————————叫————数
+16读作—————————————————————16读作———————————————————
4、思考:0是正数还是负数?
5、收集生活中不同用法的负数,并说说表示什么?
(二)讲授新课:
1、检查
学生汇报(1)+500表示存入500,—500表示支出500,它们表示的意思是(相反){填相同还是相反}
(2)打开天气预报图
哈尔滨(—9°~~~—19°)表示—————今天气温零下9度到零下19度之间,气侯寒冷,下雪,结冰。——————
福州(11°~~~~~6°)表示—————今天气温零上11度到零上6度之间,气侯较温暖,看不见下雪,结冰的现象。——————
它们是以(0)度为基准,例如:+16°表示——零上16度——————16°表示————零下16度————
+16°与—16°表示两个(相反)意义的量。
哪个地方的气温高,哪个地方的气温低?
比较:+16°(>)—16°{填>,<或=
补充:认识数轴表示
—16 0 +16
(3)生汇报:
带有“+”的数有—————————————叫正数注:也可省略“+”号
带有“—”的数有—————————————叫负数注:不可省略“—”号
+16读作—正十六————————16读作—负十六————————
(4)0是正数还是负数?把你的思考与小组交流,讨论。然后小组汇报。
总结:0既不是正数也不是负数,它是正负数的分界点。
(5)、展示学生收集的生活中不同用法的负数,并说说表示什么?
例如:盈利与亏选,上车人数与下车人数,地上成数与地下层数,水位升高与下降,相反方向的距离等。
学完这节学生还有疑难问题吗?,提出,由同学,小组解决,最后困难由老师及时解答。