作为一名老师,通常会被要求编写教案,教案有助于学生理解并掌握系统的知识。快来参考教案是怎么写的吧!
一、相交线:
性质:两条直线相交,有且只有一个交点。
二、对顶角、邻补角:
1.对顶角:如图,直线AB和CD相交于点O,∠1与∠2有公共顶点O,它们的两边互为反向延长线,这样的两个角叫做对顶角。
说明:两个角是对顶角必需满足两个条件:(1)有公共顶点;(2)两边互为反向延长线。
2.邻补角:如图,∠1和∠2有一条公共边OC,它们的另一条边OA、OB互为反向延长线,显然它们互补。具有这种关系的两个角叫做互为邻补角。
3.性质:(1)对顶角相等;(2)互为邻补角的两个角的和等于。
三、有关垂线的概念和性质:1.概念:如果两条直线相交所成的四个角中,有一角是直角,就说这两条直线互相垂直,其中的一条叫做另一条直线的垂线,它们的交点叫做垂足。
说明:垂直是相交的一种特殊情况。
2.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
说明:垂线是直线,而垂线段是一条线段,点到直线的距离不是指垂线段,而是指垂线段的长度。
3.平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离。平行线间的距离处处相等。
4.性质:(1)互相垂直的两条直线相交所成的四个角都是直角;(2)过直线上一点或直线外一点画已知直线的垂线,并且只能画出一条垂线;(3)连结直线外一点与直线上各点的所有线段中,垂线段最短。简单地说:垂线段最短;(4)平行线间的距离处处相等。
四、同位角、内错角、同旁内角:
如图,直线AB、CD被第三条直线EF所截,构成八个角,简称“三线八角”。
1.同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,它们分别在AB、CD同侧,且在EF同侧。同位角呈“F”形;
2.内错角:∠3与∠5,∠4与∠6,它们分夹在AB、CD之间,同时又各在EF两侧。内错角呈“Z”形;
3.同旁内角:∠4与∠5,∠3与∠6,它们分别夹在AB、CD之间,同时又在EF同侧。同旁内角呈“U”形。
说明:(1)同位角、内错角、同旁内角是指具有特殊位置关系的两个角;
(2)这三类角都是由两条直线被第三条直线所截形成的;
(3)同位角特征:截线同旁,被截两线的同方向;内错角特征:截线两旁,被截两线段之间;同旁内角特征:截线同旁,被截两线段之间;
(4)两条直线被第三条直线所截成的八个角中,同位角4对,内错角2对,同旁内角2对。
常见考法
(1)对顶角、邻补角、同位角、内错角和同旁内角,在中考中必有所涉及,一般是综合其它知识一起考查;(2)垂线段最短的性质在生活中有广泛应用,在中考中一般以填空、作图出现,主是根据要求作出垂线段或用性质解释理由。
误区提醒
(1)对顶角、邻补角以及垂线的概念理解有误;(2)在复杂图形中辨认同位角、内错角、同旁内角时产生遗漏或错认。
【典型例题】如图,∠BAC=90°,AD⊥BC,则下面的结论中,正确的个数是()个。
①点B到AC的垂线段是线段AB;
②线段AC是点C到AB的垂线段;
③线段AD是点D到BC的垂线段;
④线段BD是点B到AD的垂线段;
A.1B.2C.3D.4
【解析】③是错误的,其余的均是正确的,故本题选C
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认;
2.掌握对顶角相等的性质和它的推证过程;
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点
在较复杂的图形中准确辨认对顶角和邻补角;
两条直线互相垂直的概念、性质和画法;
同位角、内错角、同旁内角的概念与识别。
三、难点
在较复杂的图形中准确辨认对顶角和邻补角;
对点到直线的距离的概念的理解;
对平行线本质属性的理解,用几何语言描述图形的性质;
能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架
五、知识点、概念总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的。关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质
对顶角的性质:对顶角相等。
17.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。充要条件。
课型:
复习课
学习目标(学习重点):
1、 针对函数及其图象一章,查漏补缺,答疑解惑;
2、 一次函数应用的复习。
补充例题:
例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系
(1)B出发时与A相距 千米;
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;
(3)B出发后 小时与A相遇;
(4)求出A行走的路程S与时间t的函数关系式;
(5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.
例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点。例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点。
(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;
(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值。
例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动。图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分。
(1)求s与t之间的函数关系式。
(2)与图③相对应的P点的运动路径是: ;P点出发 秒首次到达点B;
(3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象。
课后续助:
1、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式
①用水量小于等于3000吨 ;②用水量大于3000吨 。
(2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元。
(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?
2、某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示。
(1)有月租费的收费方式是 (填①或②),月租费是 元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议。
3、某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:
(1)在y轴( )内填入相应的数值;
(2)沙尘暴从发生到结束,共经过多少小时?
(3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式。
(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?
初二上册数学知识点总结:等腰三角形
一、等腰三角形的性质:
1、等腰三角形两腰相等。
2、等腰三角形两底角相等(等边对等角)。
3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。
5、等边三角形的性质:
①等边三角形三边都相等。
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一。
④等边三角形是轴对称图形,对称轴是三线合一(3条)。
6、基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形。
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
●教学目标
(一)教学知识点
1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
2.能根据相似比进行计 算。
(二)能力训练要求
1.能根据定义判断两个三角形是否相似,训练 学生的判断能力。
2.能根据相似比求长度和角度,培养学生的运用能力。
(三)情感与价值观要求
通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系。
●教学重点 相似三角形的定义及运用。
●教学难点 根据定义求线段长或角的度数。
●教学过程
Ⅰ.创设问题情境,引入新课
今天, 我们就来研究相似三角形。
Ⅱ.新课讲解
1.相似三角形的定义及记法
三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF
其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应。AB∶DE等于相似比。
2.想一想
如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?
所以 D、E、F. .
3.议一议,学生讨论
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
结论:两 个全等三角形一定相似。
两个 等腰直角三角形一定相似。两个等边三角形一定相似。两个直角三角形和两个等腰三角形不一定相似。
4.例题
例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度。
例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,
ACB=40,求(1)AED和ADE的度数。(2)DE的长。
5.想一想
在例2的条件下,图中有哪些线段成比例?
Ⅲ.课堂练习 P129
Ⅳ.课时小结
相似三角形的 判定方法定义法。
Ⅴ.课后作业
一、学习目标
1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的'推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)20__×1999
(2)998×1002
导入新课:计算下列多项式的积。
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:计算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习
计算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小结
(a+b)(a—b)=a2—b2
教学指导思想与理论依据
《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。” 教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的。效果。
教学内容分析:
本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特� 本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。
学生情况分析:
本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。
教学方式与教学手段说明:
本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。
知识与技能:
1、初步理解特殊四边形性质;
2、培养学生自主收集、描述和分析数据的能力;
过程与方法:
1、了解特殊四边形性质的形成过程;
2、初步了解探究新知识的一些方法;
情感与价值观:
1、了解特殊四边形在日常生活中的应用;
2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;
3、初步具有感性认识上升到理性认识的辩证唯物主义思想。
教学环境:
多媒体计算机网络教室
教学课型:
试验探究式
教学重点:
特殊四边形性质
教学难点:
特殊四边形性质的发现
一、设置情景,提出问题
提出问题:
知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)?
1、电动门的网格和结点能组成哪些四边形?
2、在开(关)门过程中这些四边形是如何变化的?
3、你还发现了什么?
解决问题:
学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;
当我们学习完本节知识后,其他问题就容易解决了。
(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)
二、整体了解,形成系统
本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。
提出问题:
1、本章主要研究哪些特殊四边形?
2、从哪几方面研究这些特殊四边形?
3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么?
解决问题:
学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。
1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形
2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;
3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。
(意图: 学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)
三、个体研究、总结性质
1、平行四边形性质
提出问题:
在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。
解决问题:
教师引导学生拖动B点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。
在图形变化过程中,
(1)对边相等;
(2)对角相等;
(3)通过AO=CO 、BO=DO,可得对角线互相平分;
(4)通过邻角互补,可得对边平行;
(5)内外角和都等于360度;
(6)邻角互补;
……
指导学生填表:
平行四边形性质矩形性质正方形性质
菱形性质
梯形性质等腰梯形性质
直角梯形性质
(既属于平行四边形性质又属于矩形性质可以画箭头)
按照平行四边形性质的探索思路,分别研究:
2、矩形性质;
3、菱形性质;
4、正方形性质;
5、梯形性质;
6、等腰梯形性质;
7、直角梯形的性质。
(意图: 学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)
教师总结:
(意图: 掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)
四、联系生活,解决问题
解决问题:
学生操作电脑,观察图形、分组讨论,教师个别指导。
学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。
四边形具有不稳定性,而三角形没有这个特点……
(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)
五、小结
1.研究问题从整体到局部的方法;
2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。
六、作业
1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。
2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。
学习效果评价
针对教学内容、学生特点及设计方案,预计下列学习效果:
利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。
在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。
学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;
由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:
①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”,经过怎样的平移而形成?
(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
总课时:7课时 使用人:
备课时间:第八周 上课时间:第十周
第4课时:5、2平面直角坐标系(2)
教学目标
知识与技能
1、在给定的直角坐标系下,会根据坐标描出点的位置;
2、通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。
过程与方法
1、经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;
2、通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。
情感态度与价值观
通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。
教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学过程
第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)
在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。
练习:指出下列 各点以及所在象限或坐标轴:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)
由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。
第二环节 分类讨论,探索新知。(15分钟,小组讨论,全班交流)
1、请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。
(-9,3),(-9,0),(-3,0),( -3,3)
( 学生操作完毕后)
2、(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
观察所得的图形,你觉得它像什么?
分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?
(出示学生的作品)画出是 这样的吗?这幅图画很美,你们觉得它像什么?
这个图形像一栋房子旁边还有一棵大树。
3、做一做
(出示投影)
在书上已建立的直角坐标系画,要求每位同学独立完成。
(学生描点、画图)
(拿出一位做对的学生的作品投影)
你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?
(像猫脸)
第三环节 学有所用。(10分钟,先独立完成,后小组讨论)
(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
观察所得的图形,你觉得它像什么?(像移动的菱形)
2、在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。
先独立完成,然后小组讨论是否正确。
第四环节 感悟与收获(5分钟,学生总结,全班交流)
本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。
在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。
第五环节 布置作业
习题5、4
A组(优等生)1、2、3
B组(中等生)1、2
C组(后三分之一生)1、2
教学目标
1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。
2、会用配方法解二次项系数为1的一元二次方程。
重点难点
重点:会用配方法解二次项系数为1的一元二次方程。
难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。
教学过程
(一)复习引入
1、a2±2ab+b2=?
2、用两种方法解方程(x+3)2-5=0。
如何解方程x2+6x+4=0呢?
(二)创设情境
如何解方程x2+6x+4=0呢?
(三)探究新知
1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。
2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方。将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。
(四)讲解例题
例1(课本P.11,例5)
[解](1)x2+2x-3(观察二次项系数是否为“l”)
=x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的'平方,再减去这个数,使它与原式相等)
=(x+1)2-4。(使含未知数的项在一个完全平方式里)
用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。
例2引导学生完成P.11~P.12例6的填空。
(五)应用新知
1、课本P.12,练习。
2、学生相互交流解题经验。
(六)课堂小结
1、怎样将二次项系数为“1”的一元二次方程配方?
2、用配方法解一元二次方程的基本步骤是什么?
(七)思考与拓展
解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。
说一说一元二次方程解的情况。
[解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。
(2)用配方法可解得x1=x2=-。
(3)用配方法可解得x1=,x2=
一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。
课后作业
课本习题
教学后记:
一、班级情况分析:
本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。
一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。
两班的整体成绩均不够理想。
二、教材分析:
本套教材切合《标准》的课程目标,有以下特点:
1、为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。
2、向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。
3、为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。
4、展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。
5、满足不同学生发展的需求。
三、教学目标及要求:
第一章:
1、经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2、经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
3、了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。
4、会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1、经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。
3、经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。
4、进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。
第三章:
1、能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。
2、了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。
3、通过实例,体验收集、整理、描述和分析数据的过程。
4、能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。
第四章:
1、经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。
2、体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。
3、能设计符合要求的简单概率模型。
第五章:
1、通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。
2、在探索图形性质的过程中,发展推理能力和有条理的表达能力。
3、进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。
4、了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。
5、在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。
第六章:
1、经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。
2、能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。
3、能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。
4、能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
第七章:
1、在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。
2、通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3、探索并了解基本图形的轴对称性及其相关性质。
4、能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。
5、欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
四、教学改革的设想(教学具体措施)
充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:
1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。
2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。
3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。
4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。
5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。
6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。
7、课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。
8、重视学生学习兴趣的培养,激发学生学习数学的内驱力。
9、大胆地深度尝试新的教学方法,要因地制宜,因材施教。
10、重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。
11、注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。
12、多用多媒体教学,使数学生动化。
13、多用实物教学,使数学形象化。
14、实行课课清,日日清,周周清。
15、加强课堂管理,严把课堂质量关,提高课堂效率。
16、抓好学生的作业上交完成情况。
17、加强与学生的交流,做好学生的思想教育与培优辅差工作。
五、拟定本学期教学目标
六、拟定本学期培优扶养计划。
培扶措施
对临界优秀生
在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。
对临界及格生:
首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。
七、教学内容及课时安排(略)
八、作业格式及批改要求:
作业格式:
1、作业本左边都画上竖线,留约0.5CM空白。
2、每次作业都要在第一行注明日期和作业的出处,如P42,1即课本42面第1题。
3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。
批改要求:
1、每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。
2、每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分A、B、C三等,代表学生的书写成绩。)
3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。
一、创设情境
1、一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象)。
2、正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线)。
3、平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4、在平面直角坐标系中,画出函数的图象。我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1、在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点。
2、求直线y=-2x-3与x轴和y轴的交点,并画出这条直线。
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值。
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点。
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,。所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是。
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式。
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值。
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积。
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
1。教材分析
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。
2。教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
一、素质教育目标
(一)知识教学点
1。使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2。了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1。通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2。通过推导四边形内角和定理,对学生渗透化归思想。
3。会根据比较简单的条件画出指定的四边形。
4。讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、重点难点疑点及解决办法
1。教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2。教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3。疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第一课时
七、教学步骤
【复习引入】
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一
章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。
【引入新课】
用投影仪打出课前画好的教材中P119的图。
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。
【讲解新课】
1。四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点 。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。
(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。
2。四边形内角和定理
教师问:
(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?
(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?
(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180,那么四边形的内角和就等于:
①2180=360如图4
②4180—360=360如图4—7。
例1 已知:如图48,直线 于B、 于C。
求证:(1) (2) 。
本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。
【总结、扩展】
1。四边形的有关概念。
2。四边形对角线的作用。
3。四边形内角和定理。
八、布置作业
教材P128中1(1)、2、 3。
九、板书设计
四边形(一)
四边形有关概念
四边形内角和
例1
十、随堂练习
教材P122中1、2、3。
图案设计
利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案。
通过复习轴对称、平移、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案。
1、设计图案。
2、如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案。
一、复习引入
1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系。
2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?
3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?
1.AB与CD平行且相等;
2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求。
CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.
3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.
二、探索新知
请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计。
例1 (学生活动)学生亲自动手操作题。
按下面的步骤,请每一位同学完成一个别致的图案。
(1)准备一张正三角形纸片(课前准备)(如图a);
(2)把纸片任意撕成两部分(如图b,如图c);
(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;
(4)将(3)得到的图形以正三角形的一个顶�
老师必要时可以给予一定的指导。
三、课堂小结
本节课应掌握:
利用平移、轴对称和旋转的图形变换中的一种或组合设计图案。