教案是教师在教学前认真准备的教学计划和指导材料,能够帮助教师有条不紊地组织教学活动,明确教学内容、目标和方法,确保教学过程的有序进行。三人行,必有我师也。择其善者而从之,其不善者而改之。本页是细心的小编为大家分享的7篇初二数学教案的相关文章,仅供参考,希望对大家有一些参考价值。
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
三、教材分析
义务教育课程标准实验教科书,人教版八年级数学上册共五章,16大节。
“全等三角形”会带领同学们认识形状、大小相同的图形,探索两个三角形形状、大小相同的条件,了解角平分线的性质。
在我们周围的世界,会看到许多对称的现象,怎样认识轴对称与轴对称图形?十三章“轴对称”会告诉答案。
我们生活在变化的世界中,时间的推移、人口增长、水位升降。变化的例子举不胜举。函数将给提供描述这些变化的一种数学工具——一次函数。
在“整式的乘除与因式分解”中,我们可以用含有字母的式子表示实际问题中的数量关系,解决更多与数量关系有关的问题,加深对“从数到式”这个由具体到抽象的过程的认识。
四、教学措施
1、认真学习钻研新课标,掌握教材,编写好“教案”“学案”。
2、认真备课,争取充分掌握学生动态。
认真钻研大纲和教材,做好各章节的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。
3、认真上好每一堂课。
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
4、落实每一堂课后辅助,查漏补缺。
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生的合理化建议。
7、深化两极生的训导。
八年级是承上启下的非常关键的一年,学习习惯、学习方法的养成在此一举。因此,在教学中要密切注意学生的思想动态,及时引导,使好的更好,差的迎头赶上。尽可能多的抓学生,面广,量大,同时也要注意保质保量的完成教学任务。
一、利用勾股定理进行计算
1、求面积
例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。
析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2—BD2=102—82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。
2、求边长
例2:如图2,在△ABC中,∠C=135?BC=,AC=2,试求AB的长。
析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。
二、利用勾股定理的逆定理判断直角三角形
例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。
析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2—10a+b2—24b+c2—26c+338=0,所以a2—10a+25+b2—24b+144+c2—26c+169=0,所以(a—5)2+(b—12)2+(c—13)2=0。因为(a—5)2≥0,(b—12)2≥0,(c—13)2≥0,所以a—5=0,b—12=0,c—13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。
三、利用勾股定理说明线段平方和、差之间的关系
例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2—AE2。
析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2—AE2。
点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。
初二上册数学知识点总结:等腰三角形
一、等腰三角形的性质:
1、等腰三角形两腰相等。
2、等腰三角形两底角相等(等边对等角)。
3、等腰三角形的顶角角平分线、底边上的中线,底边上的`高相互重合。
4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。
5、等边三角形的性质:
①等边三角形三边都相等。
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一。
④等边三角形是轴对称图形,对称轴是三线合一(3条).
6.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形。
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数
能力目标:会用变化的量描述事物
情感目标:回用运动的观点观察事物,分析事物
重点:函数的概念
难点:函数的概念
教学媒体:多媒体电脑,计算器
教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围
教学设计:
引入:
信息1:小明在14岁生日时,看到
① 这张图告诉我们哪些信息?
② 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?
(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:
① 这表告诉我们哪些信息?
② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?
一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:例1 判断下列变量之间是不是函数关系:
(5) 长方形的宽一定时,其长与面积;
(6) 等腰三角形的底边长与面积;
(7) 某人的年龄与身高;
活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系
思考:自变量是否可以任意取值
例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。
(1) 写出表示y与x的函数关系式。
(2) 指出自变量x的取值范围。
(3) 汽车行驶200km时,油箱中还有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活动2:练习教材9页练习
小结:(1)函数概念
(2)自变量,函数值
(3)自变量的取值范围确定
作业:18页:2,3,4题
一、教学目的:
1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2、在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点
1、教学重点:菱形的两个判定方法。
2、教学难点:判定方法的证明方法及运用。
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算。这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成。程度好一些的班级,可以选讲例3.
四、课堂引入
1、复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1菱形的四条边都相等;
性质2菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2、【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3、【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1 对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直。
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2 四边都相等的四边形是菱形。
一、教学目标
1、了解二次根式的意义;
2、 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、 掌握二次根式的性质 和 ,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念。
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
表示的是算术平方根。
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义: 式子 叫做二次根式。
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1 当a为实数时,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四个是二次根式。 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义。
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式。
(2)-3x0,x0,即x0时, 是二次根式。
(3) ,且x0,x0,当x0时, 是二次根式。
(4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式。
例4 下列各式是二次根式,求式子中的字母所满足的条件:
(1) ; (2) ; (3) ; (4)
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+30,得 。
(2)由 ,得3a-10,解得 。
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式。 所以所求字母x的取值范围是全体实数。
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)
1、式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。
2、式子中,被开方数(式)必须大于等于零。
(四)练习和作业
练习:
1、判断下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式。 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。
2.a是怎样的实数时,下列各式在实数范围内有意义?
五、作业
教材P.172习题11.1;A组1;B组1.
六、板书设计
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。