新学期已经开始了,同学们又要进入紧张的学习生活当中了,下面是的小编为您带来的八年级上册数学教案【优秀9篇】,您的肯定与分享是对小编最大的鼓励。
设置依据教学目标
1、了解多面体、直棱柱的有关概念
2、会认直棱柱的侧棱、侧面、底面.
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.
教学重点与难点
教学重点:直棱柱的有关概念
教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力。
教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型
教 学 过 程
内容与环节预设、简明设计意图二度备课(即时反思与纠正)
一、创设情景,引入新课
师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的`立体图形呢?
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知
1.多面体、棱、顶点概念:
师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?
析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点
2.合作交流
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描述其特征。)
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以致用
出示例题。(先请学生单独考虑,再作讲解)
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)
最后完成例题中的“想一想”
5.巩固练习(学生练习)
完成“课内练习”
三、小结回顾,反思提高
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计
作业布置或设计作业本及课时特训
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)
明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的'角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本
1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习
(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)
一、教学目标:
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
二、重点、难点和难点的突破方法:
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式
3.难点的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的'波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三、例习题的意图分析:
1.教材P125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2.教材P154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四、课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五、例题的分析:
教材xxx例x在分析过程中应抓住以下几点:
1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六、随堂练习:
1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数1 2 3 4 5
段巍13 14 13 12 13
金志强10 13 16 14 12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.xx的成绩比xx的成绩要稳定。
七、课后练习:
略。
教学目标
理解平行四边形的定义,能根据定义探究平行四边形的性质。
教学思考
1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力。
2.能够根据平行四边形的性质进行简单的推理和计算。
解决问题
通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识。
情感态度
在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验。
重点
平行四边形的性质的探究和平行四边形的性质的应用。
难点
平行四边形的性质的应用。
教学流程安排
活动流程图
活动内容和目的
活动1欣赏图片,了解生活中的特殊四边形
活动2剪三角形纸片,拼凸四边形
活动3理解平行四边形的概念
活动4探究平行四边形边、角的性质
活动5平行四边形性质的应用
活动6评价反思、布置作业
熟悉生活中特殊的四边形,导出课题。
通过用三角形拼四边形的过程,渗透转化思想,激发探索精神。
掌握平行四边形的定义及表示方法。
探究平行四边形的性质。
运用平行四边形的性质。
学生交流,内化知识,课后巩固知识。
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
下面的图片中,有你熟悉的'哪些图形?
(出示图片)
演示图片,学生欣赏。
教师介绍四边形与我们生活密切联系,学生可再补充列举。
从实例图片中,抽象出的特殊四边形,培养学生的抽象思维。通过举例,让学生感受到数学与我们的生活紧密联系。
问题与情景
师生行为
设计意图
[活动2]
拼一拼
将一张纸对折,剪下两张叠放的三角形纸片。将这两个三角形相等的一组边重合,你会得到怎样的图形。
(1)你拼出了怎样的凸四边形?与同伴交流。
(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由。
学生经过实验操作,开展独立思考与合作学习。
教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究。
教师待学生充分探究后,请学生展示拼图的方法和不同的图形。并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容
学习重点:
函数的概念 及确定自变量的取值范围。
学习难点:
认识函数,领会函数的意义。
【自主复习知识准备】
请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。
【自主探究知识应用】
请看书72——74页内容,完成下列问题:
1、 思考书中第72页的问题,归纳出变量之间的关系。
2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。
3、 归纳出函数的定义,明确函数定义中必须要满足的条件。
归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的'值为a时的函数值。
补充小结:
(1)函数的定义:
(2)必须是一个变化过程;
(3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。
三、巩固与拓展:
例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
(1)写出表示y与x的函数关系式。
(2)指出自变量x的取值范围。
(3) 汽车行驶200千米时,油箱中还有多少汽油?
【当堂检测知识升华】
1、判断下列变量之间是不是函数关系:
(1)长方形的宽一定时,其长与面积;
(2)等腰三角形的底边长与面积;
(3)某人的年龄与身高;
2、写出下列函数的解析式。
(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子。
(2)汽车加油时,加油枪的流量为10L/min.
①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;
②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系。
(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。 (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式。
教学目标
(一)教学知识点
1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。
2.理解积的乘方运算法则,能解决一些实际问题。
(二)能力训练要求
1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。
2.学习积的乘方的运算法则,提高解决问题的能力。
(三)情感与价值观要求
在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。
教学重点
积的乘方运算法则及其应用。
教学难点
幂的运算法则的灵活运用。
教学方法
自学─引导相结合的方法。
同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。
教具准备
投影片.
教学过程
Ⅰ.提出问题,创设情境
[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?
[生]它的'体积应是V=(1.1×103)3cm3。
[师]这个结果是幂的乘方形式吗?
[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。
[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。
Ⅱ.导入新课
老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。
出示投影片
1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
(2)(ab)3=______=_______=a()b()
(3)(ab)n=______=______=a()b()(n是正整数)
2.把你发现的规律用文字语言表述,再用符号语言表达。
3.解决前面提到的正方体体积计算问题。
4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。
5.完成课本P170例3。
一、课堂导入
回顾平行四边的性质定理及定义
1.什么叫平行四边形?平行四边形有什么性质?
2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
二、新课讲解
平行四边形的判定:
(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。
活动:用做好的`纸条拼成一个四边形,其中强调两组对边分别相等。
(平行四边形判定定理):
(一)两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?
已知:四边形ABCD中,AB=CD,BC=DA。
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形
(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?
活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?
设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)
教学目标:
1、知道负整数指数幂=(a≠0,n是正整数)、
2、掌握整数指数幂的运算性质、
3、会用科学计数法表示小于1的数、
教学重点:
掌握整数指数幂的运算性质。
难点:
会用科学计数法表示小于1的数。
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题。
教学过程:
一、课堂引入
1、回忆正整数指数幂的。运算性质:
(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);
(2)幂的乘方:(am)n = amn (m,n是正整数);
(3)积的乘方:(ab)n = anbn (n是正整数);
(4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);
(5)商的乘方:()n = (n是正整数);
2、回忆0指数幂的规定,即当a≠0时,a0 = 1。
3、你还记得1纳米=10?9米,即1纳米=米吗?
4、计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的。
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义。
2.使学生会用描点法画出简单函数的图象。
二、教学重点、难点
重点:1.理解与认识函数图象的意义。
2.培养学生的看图、识图能力。
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题。
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法。)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法,其步骤:
(1)列表.要注意适当选取自变量与函数的对应值。什么叫“适当”?——这就要求能选取表现函数图象特征的`几个关键点。比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了。
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来。
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点。
(3)用光滑曲线连线。根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线。
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线)。
2.讲解画函数图象的三个步骤和例。画出函数y=x+0.5的图象。
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图。
练习
①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象。
作业
选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想。通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识。把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征。
2.注意充分调动学生自己动手画图的积极性。
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能。故在教学中要倾向培养学生看图、识图的能力。