中考数学答题技巧(优秀6篇)

中考数学答题技巧 篇1

中考数学答题技巧:分类讨论避免漏解

中考数学复习中要擅于运动学习技巧、解题技巧!分类讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。临近中考,将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论的能力。

概念不清,导致漏解

对所学知识概念不清,领会不够深刻,导致答题不完整。

例:已知(a-3)x6,求x的取值范围。

分析:根据不等式的性质不等式的两边同乘或同除以不为零的负数,不等号的方向要改变,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。

例:若y2+(k+2)y+16是完全平方式,求k。

分析:完全平方式中有两种情况:(ab)2=a22ab+b2,而同学们往往容易忽略k+2=-8这一解。

思维固定,导致漏解

在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。

例:若等腰三解形腰上的高等于腰长的一半、求底角。

分析:据题意,由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。

例:若直角三角形三条边分别为3、4、c,求c的值。

分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。

例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。

分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。

忽视特殊性,导致漏解

许多问题中存在着特殊情况,一旦忽视了这些特殊情况,往往容易导致漏解。

例:已知抛物线y=x2及该抛物线上一点A(1,1)求与此抛物线只有一个公共点A的直线方程。

分析:此题大部分同学设直线方程为y=kx+b,并与y=x2组成方程组,消去y,解得直线方程y=2x-1,但还有一条特殊的直线x=1也是符合题意的,这条直线中的k不存在,因而用以上方法求解必定会被遗漏。

上述是同学们在解答基础题中经常出现的分类思考不全面的情况,而在利用分类讨论思想求解相关综合题有时比较复杂,在这里介绍一些方法,给同学们一些启示。

首先,要严密审题,一字一句阅读,切勿匆匆看题。有时疏忽了一字一句,使该讨论的不讨论,即使讨论了也不全面,如题中出现的线段、射线或直线都是有区别的,不能把它们都当作线段去求解,

例如:方程(a-1)x2-6x+4=0有实数根,则a的取值范围是多少?对此题,同学们往往认为只要利用△求解一元二次方程,但题中出现方程,应该既要考虑它可能是一元二次方程,也可能是一元一次方程,不应人为地缩小了a的范围仅当作一元二次方程去求解。

其次,对可能出现的几种情况要全面考虑到,是否还有其他可能情况,争取做到全面、完整、勿缺、勿漏。

例如:在ABC中,点D在射线AC上,AD=10,以D点为圆心,半径为5作圆交射线AB于E、F两点,EF=6,另在射线AC上取P点为圆心作圆,使圆P既与射线AB相切又与圆D相切,求圆P的半径。

在此题的解答过程中要着重注意两个关键词射线和相切,特别是对相切要进行全面的分类讨论,先分为外切和内切两种情况,且每种情况又要再考虑到与圆D相切的左右位置关系,因此最后圆P共有四种位置情况。

再次,对综合题中可能出现的几种情况,要先想一想哪一种求解方便,就先解决这一种情况,这样容易得分,又节省时间,否则有时卡住,造成紧张心理,甚至没有时间去解一些简单的情况,造成失分。而对较难的一种情况求解,一时想不到其他解法,或者虽然能去求解,但过程非常复杂、繁琐,此时不妨退回来想一想:能否对较难的情况进行转化?或者找一个等价的问题去进行求解?这样说不定会找到较简捷、方便的方法,否则,若直接去求解,非常繁杂,耗费大量时间,还可能在运算中造成错误,这更是得不偿失。

中考数学答题技巧 篇2

学会梳理数学知识

总结梳理,提炼方法。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。

如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。梳理了题型就可以进一步探索解题规律。

摸清题型

中考考生在拿到中考数学试卷后,不要着急做题,第一步应该是中考考生将数学试卷从头到尾的阅读一遍,看看题型的设置是什么,从而确定自己该如何进行答题,以防止出现答不完题的情况出现。

辅助解答

一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真—学习认真—成绩优良—给分偏高。有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。

做题原则“一快一慢”

这里所谓的“一快一慢”指的是审题要慢,做题要快。

题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。

中考数学常见解题技巧方法总结 篇3

1、线段、角的计算与证明

中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

2、一元二次方程与函数

在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

3、多种函数交叉综合问题

初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。

4、列方程(组)解应用题

在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

5、动态几何与函数问题

整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。

6、几何图形的归纳、猜想问题

中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。

中考数学答题技巧 篇4

中考数学答题考试技巧

一、选择题的解法

1、直接法:根据题设条件,通过计算、推理或判断,得到题目所求。

2、特殊值法:有些选择题所涉及的数学命题与字母取值范围有关;在解这类题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉。

二、常用的。数学思想方法

1、数形结合思想:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

2、联系转化思想:事物之间是相互联系、相互制约、相互转化的,数学学科也是。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论思想:在数学中,我们常常需要根据研究对象性质的差异,分不同情况予以考查;这种分类思考的方法同时也是重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就可以使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。是初中代数中重要的变形技巧,在分解因式、解方程、讨论二次函数等问题中,都起到了重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,归结为比原来更为基本的问题。

7、归纳演绎法:由一般到特殊的推理方法。

8、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似。类比法既可能是特殊到特殊,也可能是一般到一般。

三、证明角的相等

1、对顶角相等。

2、同角(或等角)的余角(或补角)相等。

3、两直线平行,同位角相等、内错角相等。

4、凡直角都相等。

5、角平分线分得的两个角相等。

6、同一个三角形中,等边对等角。

7、等腰三角形中,底边上的高(或中线)平分顶角。

8、平行四边形的对角相等。

9、菱形的每一条对角线平分一组对角。

10、等腰梯形同一底上的两个角相等。

11、同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

12、圆内接四边形的任何一个外角都等于它的内对角。

13、同弧或等弧所对的圆周角相等。

14、弦切角等于它所夹的弧所对的圆周角。

15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

16、全等三角形的对应角相等。

17、相似三角形的对应角相等。

18、利用等量代换。

19、利用三角函数。

20、切线长定理:从圆外一点引圆的两条切线,它们的切线段长度相等,并且这一点和圆心的连线平分两条切线的夹角。

四、证明直线的平行或垂直

1、证明两条直线平行的主要依据和方法:

(1)定义:在同一平面内不相交的两条直线平行。

(2)平行定理:两条直线都和第三条直线平行,则这两条直线也互相平行。

(3)平行线的判定:同位角相等(内错角相等或同旁内角互补),两直线平行。

(4)平行四边形的对边平行。

(5)梯形的两底平行。

(6)三角形(或梯形)的中位线平行与第三边(或两底)

(7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

2、证明两条直线垂直的主要依据和方法:

(1)两条直线相交所成的四个角中,有一个是直角时,这两条直线互相垂直。

(2)直角三角形的两直角边互相垂直。

(3)三角形的两个锐角互余,则第三个内角为直角。

(4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

(5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

(6)三角形(或多边形)一边上的高垂直于这边。

(7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

(8)矩形的两邻边互相垂直。

(9)菱形的对角线互相垂直。

(10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。(11)半圆或直径所对的圆周角是直角。

(12)圆的切线垂直于过切点的半径。

(13)相交两圆的连心线垂直于两圆的公共弦。

解题方法:

01

排除法(筛选法)

从已知条件出发,结合选项,通过观察、分析、猜想、计算等方法一一排除明显出错的答案,缩小思考范围,提高解题的速度。

比如二次函数和一次函数图像的选择题,逐一排除错误选项,从而确定正确的一项。

02

验证法

把各个选择项代入原题加以验证,看是否符合题意,然后得出结论。比如图像是否经过这点,就可以用验证的方法带入题中,得出正确的选项。

03

特殊值法

根据题设条件,选取恰当的特殊数值,替代题中的字母和数式,通过计算,得出答案,再类推一般性答案,从而得出正确答案。

比如规律题,推理结果时,可以用一些数值来进行验证。

填空题

填空题是初中数学测试中常见的一种基本题型,突出考查同学们准确、严谨、全面、灵活的运用知识进行正确运算的能力。

填空题只要求写答案,缺少选项提供的目标信息,结果正确与否难以判断,一步失误,全题零分,要想又快又准的做好填空题,要在「准、巧、快」三字上下功夫。

04

直接法

直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。通过推理和运算等过程,直接得到结果。

05

数形结合法

数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。

通过对图像的观察、分析和研究、启发解题思路,找出问题的隐含条件,从而简化解题过程,检验解题结果。

解答题

解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。

解答题涉及的知识点多、覆盖面广,综合性强、跨度大、解法灵活,涉及数式计算、函数图像及性质的计算应用等。

解题的关键是从题目的语言叙述中获取「符号信息」,从题目的图像、图形中获取「形象信息」,灵活应用定义、公式、性质、定理进行计算和推理。运用各种数学思想,构建各种数学模型解决问题。

06

构造图形

复杂的几何图形问题,一般需要添加恰当的辅助线才能顺利解决,如连接、延长、做平行、做垂直等,将不规则、不常见的图形转化为规则或特殊的图像求解。

如:构造等长线段、三线八角、全等三角形、相似三角形、直角三角形等,从而利用特殊图形的性质和判定解决问题。

中考数学常见解题技巧方法总结 篇5

1、数形结合思想

就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想

事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想

在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法

当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法

就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法

在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法

在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

8、综合法

在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

9、演绎法

由一般到特殊的推理方法。

中考数学答题技巧 篇6

数学中考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”或者“踩点给分”——踩上知识点就得分,踩得多就多得分。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。这一点。对于解答题尤为重要。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。

一键复制全文保存为WORD