无论是身处学校还是步入社会,我们都不可避免地会接触到试题,借助试题可以更好地考核参考者的知识才能。那么问题来了,一份好的试题是什么样的呢?下面是的小编为您带来的初二数学几何考试题【最新3篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
直角三角形
◆备考兵法
1、正确区分勾股定理与其逆定理,掌握常用的勾股数。
2、在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化。
3、在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°)。若有,则应运用一些相关的特殊性质解题。
4、在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决。
5、折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路。
三角形的重心
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1、重心和三角形3个顶点组成的3个三角形面积相等。
2、重心到三角形3个顶点距离的平方和最小。
3、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
4重心到顶点的距离与重心到对边中点的距离之比为2:1。
5、重心是三角形内到三边距离之积的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
相似、全等三角形
1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
【】3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
5、判定定理3三边对应成比例,两三角形相似(SSS)
6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
8、性质定理2相似三角形周长的比等于相似比
9、性质定理3相似三角形面积的比等于相似比的平方
10、边角边公理有两边和它们的夹角对应相等的两个三角形全等
11、角边角公理有两角和它们的夹边对应相等的两个三角形全等
12、推论有两角和其中一角的对边对应相等的两个三角形全等
13、边边边公理有三边对应相等的两个三角形全等
14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
15、全等三角形的对应边、对应角相等
等腰、直角三角形
1、等腰三角形的性质定理等腰三角形的两个底角相等
2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
3、等腰三角形的顶角平分线、底边上的中线和高互相重合
4、推论3等边三角形的各角都相等,并且每一个角都等于60°
5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
6、推论1三个角都相等的三角形是等边三角形
7、推论2有一个角等于60°的等腰三角形是等边三角形
8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
9、直角三角形斜边上的中线等于斜边上的一半
根据初一学生年龄,能力特点,对点、线、面、体以及几何图形、平面图形、立体图形等概念,教学中要借助于教具、模型、实物、图形等具体描述,先得到直观的感性认识,在感知基础上,培养学生的抽象思维。从小学学过的线段、三角形、正方形、圆柱图形以及面积和体积的计算,说明早已学习了一些几何知以。学生对几何就有一种“老朋友”的亲切感。然后鼓励学生只要勤奋努力地学习,我们完全可以把它学好,树立学几何的信心。
上到初中,几何跟小学的也差不多,只是不单纯只是认识某些几何图形,而且要学习它的构成,它的特点,这就要求他们要多开动脑筋,发展空间想像能力,如:通过手电筒或探照灯“射”出的光束,说明射线的意义,行进中的火把、飞行中的萤火虫等实例,认识点动成线、线动成面、面动成体等等。比如学到锥、柱、球的时候,必须先制作好模型,这样才能更好的让学生们直观感受到几何体,先让他们在脑海中树立这些几何体的形象,然后再拆分开来看它的构成,包括线、面的特点。在画三视图的时候,拿出正方体让学生们动手摆出所要求的几何体并上前从不同的方向看它,然后画出它的三视图,然后依据老师画的俯视图摆出相应的几何体,多次反复,最后总结经验,可以让学生更能记住,更形象生动有趣,又有动手能力。
(一)对基础知识的把握一定要牢固,在这个基础上我们才能谈如何学好的新问题。例如我们在证实相似的时候,假如利用两边对应成比例及其夹角相等的方法时,必须注重所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固把握,只有这样才是学好几何的基础。
(二)善于归纳总结,熟悉常见的特征图形。举个例子,如图,已知A,B,C三点共线,分别以AB,BC为边向外作等边△ABD和等边△BCE,假如再没有其他附加条件,那么你能从这个图形中找到哪些结论?
假如我们通过很多习题能够总结出:一般情况下题目中假如有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论,这样我们很轻易得出△ABE≌△DBC,在这对全等三角形的基础上我们还会得出△EMB≌△B,△MBN是等边三角形,MN∥AC等主要结论,这些结论也会成为解决其它新问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。
(三)熟悉解题的常见着眼点,常用辅助线作法,把大新问题细化成各个小新问题,从而各个击破,解决新问题。在我们对一个新问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决新问题的着眼点。例如,在一个非直角三角形中出现了非凡的角,那你应该马上想到作垂直构造直角三角形。因为非凡角只有在非凡形中才会发挥功能。再比如,在圆中出现了直径,马上就应该想到连出90�的圆周角。碰到梯形的计算或者证实新问题时,首先我们心里必须清楚碰到梯形新问题都有哪些辅助线可作,然后再具体新问题具体分析。举个例子说,假如题目中说到梯形的腰的中点,你想到了什么?你必须想到以下几条,第一你必须想到梯形的中位线定理。第二你必须想到可以过一腰的中点平移另一腰。第三你必须想到可以连接一个顶点和腰的中点然后延长去构造全等三角形。只有这几种可能用到的辅助线烂熟于心,我们才能很好的解决新问题。其实很多时候我们只要抓住这些常见的着眼点,试着去作了,那么新问题也就迎刃而解了。另外只要我们想到了,一定要肯于去尝试,只有你去做了才可能成功。