以太网是应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARcomET。下面是小编精心为大家整理的怎样组建简单的以太网【通用8篇】,希望能够帮助到大家。
除了以上提到的不同帧类型以外,各类以太网的差别仅仅在于速率和配线。因此,总的来说,同样的网络协议栈软件可以运行在大多数以太网上。
以下的章节简要综述了不同的正式的以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,比如为了支持更长距离的光纤传输,而制定了一些专用的标准。
很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T,100BASE-TX,和1000BASE-T。
施乐以太网 -- 最初的3-Mbit/s以太网,有两个版本:版本一和版本二。版本二的帧格式现在还在普遍使用。
10BROAD36 -- 已经过时。一个早期的支持长距离以太网的标准。它运行在同轴电缆上,使用了一种类似于线缆调制解调器系统的宽带调制技术。
1BASE5 -- 也叫做星型局域网,速率是1Mbit/s。在商业上很失败。双绞线 的第一次使用就用在这里。
尽管中继器在某些方面隔离了以太网网段,电缆断线的故障不会影响到整个网络,但它向所有的以及网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。象生成树协议这样的控制机制可以协调多个交换机共同工作。
早期的网桥要检测每一个数据包,这样,特别是同时处理多个端口的时候,数据转发相对Hub(中继器)来说要慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。
大多数现代以太网用以太网交换机代替Hub。尽管布线同Hub以太网是一样的,但是交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的结局隔离异常设备。交换网络典型的使用星型拓扑, 尽管设备工作在半双工模式是仍然是共享介质的多结点网。10BASE-T和以后的标准是全双工以太网,不再是共享介质系统。
交换机加电后,首先也像Hub那样工作,转发所有数据到所有端口。接下来,当它学习到每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。这样,线速以太网交换就可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。
因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。尽管如此,交换式以太网依然是不安全的网络技术,因为它还很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。
当只有简单设备(除Hub之外的设备)接入交换机端口,那么整个网络可能工作在全双工方式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。总的带宽就是链路的2倍(尽管带宽每个方向上是一样的),但是没有冲突发生就意味着允许几乎100%的使用链路带宽。
交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商被禁用或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多低端交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时 (例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100 交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。
即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经产发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。。
当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像 ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路。因此如果过高的速率导致电缆不可靠就会导致链路失效。解决方案只有强制通讯端降低到电缆支持的速率。
10BASE5 (也叫粗缆或黄色电缆) --最早实现10 Mbit/s以太网。 早期IEEE标准,使用单根50欧姆阻抗RG-8同轴电缆,最大距离500米。接收端通过所谓的“插入式分接头”插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。An AUI cable then connected the transceiver to the Ethernet device. 尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际已经丢弃。在电缆两端需要配置终结器。
10BASE2 (也叫细缆或模拟网路) -- 50欧姆RG-58同轴电缆,200米, 连接所有的计算机,每台计算机使用T适配器连接到带有BNC连接器的网卡。线路两头需要终结器。很长时间一直是10M网主流。
StarLAN -- 第一个双绞线上实现的以太网标准10 Mbit/s. 后发展成10BASE-T.
10BASE-T --使用3类双绞线或者5类双绞线的4根线 (2对绞线) 100米。以太网集线器或以太网交换机 位于中间连接所有节点。
FOIRL -- 光纤中继器链路。光纤以太网原始版本。
10BASE-F -- 10Mbps以太网光纤标准通称,2千米。只有10BASE-FL应用比较广泛
10BASE-FL -- FOIRL标准一种升级。
10BASE-FB -- 用于连接多个Hub或者交换机的骨干网技术,已废弃
10BASE-FP -- 无中继被动星型网, 从未得到应
在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。
因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500 米 (1,640 英尺)。最大距离可以通过以太网 中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有3个有设备。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。
类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终结者”的50欧姆的电阻和散热器,and affixed to a male M or BNC connector.如果不这么做,就会发生类似电缆断掉的情况:总线上的AC 信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。
随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。
第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。
像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。
非屏蔽双绞线( unshielded twisted-pair cables , UTP )最先应用在星型局域网中,之后在10BASE-T中也得到应用,并最终代替了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了 AUI 成为电脑和集线器的标准界口,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。
采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总吞吐量受到单个连接速度的限制( 10或100 Mbit/s ),这还是考虑在前同步码、帧间隔、头部、尾部和打包上花销最少的情况。当网络负载过重时,冲突也常常会降低总吞吐量。最坏的情况是,当许多用长电缆组网的主机传送很多非常短的帧时,网络的负载仅达到50%就会因为冲突而降低集线器的吞吐量。为了在冲突严重降低吞吐量之前尽量提高网络的负载,通常会进行一些设置工作。
新的万兆以太网标准包含7种不同的节制类型适用于局域网,城域网和广域网。当前使用附加标准IEEE 802.3ae用以说明,将来会合并进IEEE 802.3标准。
10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。
10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。
10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。
10GBASE-LR 和10GBASE-ER -- 通过单模光纤分别支持10公里和40公里
10GBASE-SW, 10GBASE-LW,10GBASE-EW。用于广域网PHY, OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR, 10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)
10GBASE-T -- 使用非屏蔽双绞线, 计划2006年8月发布。
万兆以太网是很新的标准需要时间检验那些更适合商用。
1000BASE-T -- 1 Gbit/s 介质超五类双绞线或6类双绞线。
1000BASE-SX -- 1 Gbit/s 多模光纤(小于550 m)。
1000BASE-LX -- 1 Gbit/s 多模光纤(小于550 m)。需要使用长距离单模(光纤10千米)。
1000BASE-LH -- 1 Gbit/s 单模光纤(小于100千米)。长距离方案
1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。
100BASE-T -- 下面三个100 Mbit/s 双绞线标准通称,最远100米。
100BASE-TX -- 类似于星型结构的10BASE-T.,使用2对电缆,但是需要5类电缆以达到100Mbit/s.
100BASE-T4 -- 使用3类电缆使用所有4对线,由于5类线普及已经废弃,半双工。
100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。
100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。
100Base-VG -- 只有惠普支持, VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。