浩瀚的宇宙是哪里来的?宇宙是万物的总称,是时间和空间的统一。为大家精心整理了有关于宇宙的知识_宇宙的知识【最新2篇】,希望可以启发、帮助到大家。
1、有些宇宙学家认为,暴涨模型最彻底的改革也许是观测宇宙中所有的物质和能量从无中产生的观点,这种观点之所以在以前不能为人们接受,是因为存在着许多守恒定律,特别是重子数守恒和能量守恒。但随着大统一理论的发展,重子数有可能是不守恒的,而宇宙中的引力能可粗略地说是负的,并精确地抵消非引力能,总能量为零。因此就不存在已知的守恒律阻止观测宇宙从无中演化出来的问题。这种“无中生有”的观点在哲学上包括两个方面:①本体论方面。如果认为“无”是绝对的虚无,则是错误的。这不仅违反了人类已知的科学实践,而且也违反了暴涨模型本身。按照该模型,我们所研究的观测宇宙仅仅是整个暴涨区域的很小的一部分,在观测宇宙之外并不是绝对的“无”。这种真空能恰恰是一种特殊的物质和能量形式,并不是创生于绝对的“无”。如果进一步说这种真空能起源于“无”,因而整个观测宇宙归根到底起源于“无”,那么这个“无”也只能是一种未知的物质和能量形式。②认识论和方法论方面。暴涨模型所涉及的宇宙概念是自然科学的宇宙概念。这个宇宙不论多么巨大,作为一个有限的物质体系 ,也有其产生、发展和灭亡的历史。暴涨模型把传统的大爆炸宇宙学与大统一理论结合起来,认为观测宇宙中的物质与能量形式不是永恒的,应研究它们的起源。它把“无”作为一种未知的物质和能量形式,把“无”和“有”作为一对逻辑范畴,探讨我们的宇宙如何从“无”——未知的物质和能量形式,转化为“有”——已知的物质和能量形式,这在认识论和方法论上有一定意义。
2、 宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辩,而是建立在天文观测和物理实验基础上的一门现代科学。
“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。
宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?
人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?
1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。
宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。
导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。
宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。
1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。
1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。
至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。
大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局。
根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。
奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形态。
宇宙的不断膨胀
一般认为,宇宙产生于140亿年前一次大爆炸中。大爆炸后30亿年,最初的物质涟漪出现。大爆炸后20亿~30亿年,类星体逐渐形成。大爆炸后90亿年,太阳诞生。38亿年前地球上的生命开始逐渐演化。[3]
大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不再膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀。
大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。
理论上存在某种临界密度。如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为“开宇宙”;要是物质的平均密度大于临界密度,膨胀过程迟早会停下来,并随之出现收缩,称为“闭宇宙”。
问题似乎变得很简单,但实则不然。理论计算得出的临界密度为5×8^-30克/厘米3。但要测定宇宙中物质平均密度就不那么容易了。星系间存在广袤的星系间空间,平均密度就只有2×10^-31克/厘米3,远远低于上述临界密度。
然而,种。种证据表明,宇宙中还存在着尚未观测到的所谓的暗物质,其数量可能远超过可见物质,这给平均密度的测定带来了很大的不确定因素。因此,宇宙的平均密度是否真的小于临界密度仍是一个有争议的问题。不过,就目前来看,开宇宙的可能性大一些,因为宇宙中还有更多的暗能量。[4]
空间,而这些气体又可用来形成下一代恒星。这一过程中气体可能越来越少(并未确定这种过程会减少这种气体。)。以致于不能再产生新的恒星。10^14年后,所有恒星都会失去光辉,宇宙也就变暗。同时,恒星还会因相互作用不断从星系逸出,星系则因损失能量而收缩,结果使中心部分生成黑洞,并通过吞食经过其附近的恒星而长大。(根据质能守恒定律,形成恒星的气体并不会减少而是转换成其他形态。所以新的恒星可能会一直产生。)
10^17~10^18年后,对于一个星系来说只剩下黑洞和一些零星分布的死亡了的恒星,这时,组成恒星的质子不再稳定。10^32年后,质子开始衰变为光子和各种轻子。10^71年后,这个衰变过程进行完毕,宇宙中只剩下光子、轻子和一些巨大的黑洞。
10^108年后,通过蒸发作用,有能量的粒子会从巨大的黑洞中逃逸出。宇宙将归于一片黑暗。这也许就是开宇宙“末日”到来时的景象,但它仍然在不断地、缓慢地膨胀着。(但质子是否会衰变还未得到结论,因此根据质能守恒定律。宇宙中的质能会不停的转换。)
闭宇宙的结局又会怎样呢?闭宇宙中,膨胀过程结束时间的早晚取决于宇宙平均密度的大小。如果假设平均密度是临界密度的2倍,那么根据一种简单的理论模型,经过400~500亿年后,引力开始占上风,膨胀即告停止,而接下来宇宙便开始收缩。
以后的情况差不多就像一部宇宙影片放映结束后再倒放一样,大爆炸后宇宙中所发生的一切重大变化将会反演。收缩几百亿年后,原来星系远离地球的退行运动将代之以向地球接近的运动。再过几十亿年,宇宙背景辐射会上升到400开,并继续上升,于是,宇宙变得非常炽热而又稠密。 在坍缩过程中,星系会彼此并合,恒星间碰撞频繁。
这些结局只考虑到引力作用。实际上可能有更多其他的复杂因素。
2002年,据中国网[4]报导,美国普林斯顿大学的* *保罗·斯坦哈特教授与英国剑桥大学的尼尔·图罗克教授,发表了关于“宇宙无始无终”的新论断。他们认为,宇宙既没有“诞生”之日,也没有终结之时,而就是在一次又一次的大爆炸中进行运动,循环往复,以至无穷的。 至于“宇宙无始无终”的新论是否正确,报导中认为,过几年国际天文学界可望对此做出验证。但直到2013年,循环宇宙的观点仍存在争议。