数学高中知识点总结大全(优秀4篇)

数学是一门基础性的科学,学数学就是在学一种思维体系,在日常教导孩子的过程中也要注重这一点。下面是的小编为您带来的数学高中知识点总结大全(优秀4篇),您的肯定与分享是对小编最大的鼓励。

高中数学知识点总结 篇1

一、集合、简易逻辑

1、集合;

2、子集;

3、补集;

4、交集;

5、并集;

6、逻辑连结词;

7、四种命题;

8、充要条件。

二、函数

1、映射;

2、函数;

3、函数的单调性;

4、反函数;

5、互为反函数的函数图象间的关系;

6、指数概念的扩充;

7、有理指数幂的运算;

8、指数函数;

9、对数;

10、对数的运算性质;

11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)

1、数列;

2、等差数列及其通项公式;

3、等差数列前n项和公式;

4、等比数列及其通顶公式;

5、等比数列前n项和公式。

四、三角函数

1、角的概念的推广;

2、弧度制;

3、任意角的三角函数;

4、单位圆中的三角函数线;

5、同角三角函数的基本关系式;

6、正弦、余弦的诱导公式;

7、两角和与差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函数、余弦函数的图象和性质;

10、周期函数;

11、函数的奇偶性;

12、函数的图象;

13、正切函数的图象和性质;

14、已知三角函数值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法举例。

五、平面向量

1、向量;

2、向量的加法与减法;

3、实数与向量的积;

4、平面向量的坐标表示;

5、线段的定比分点;

6、平面向量的数量积;

7、平面两点间的距离;

8、平移。

六、不等式

1、不等式;

2、不等式的基本性质;

3、不等式的证明;

4、不等式的解法;

5、含绝对值的不等式。

七、直线和圆的方程

1、直线的倾斜角和斜率;

2、直线方程的点斜式和两点式;

3、直线方程的`一般式;

4、两条直线平行与垂直的条件;

5、两条直线的交角;

6、点到直线的距离;

7、用二元一次不等式表示平面区域;

8、简单线性规划问题;

9、曲线与方程的概念;

10、由已知条件列出曲线方程;

11、圆的标准方程和一般方程;

12、圆的参数方程。

八、圆锥曲线

1、椭圆及其标准方程;

2、椭圆的简单几何性质;

3、椭圆的参数方程;

4、双曲线及其标准方程;

5、双曲线的简单几何性质;

6、抛物线及其标准方程;

7、抛物线的简单几何性质。

九、直线、平面、简单何体

1、平面及基本性质;

2、平面图形直观图的画法;

3、平面直线;

4、直线和平面平行的判定与性质;

5、直线和平面垂直的判定与性质;

6、三垂线定理及其逆定理;

7、两个平面的位置关系;

8、空间向量及其加法、减法与数乘;

9、空间向量的坐标表示;

10、空间向量的数量积;

11、直线的方向向量;

12、异面直线所成的角;

13、异面直线的公垂线;

14、异面直线的距离;

15、直线和平面垂直的性质;

16、平面的法向量;

17、点到平面的距离;

18、直线和平面所成的角;

19、向量在平面内的射影;

20、平面与平面平行的性质;

21、平行平面间的距离;

22、二面角及其平面角;

23、两个平面垂直的判定和性质;

24、多面体;

25、棱柱;

26、棱锥;

27、正多面体;

28、球。

十、排列、组合、二项式定理

1、分类计数原理与分步计数原理;

2、排列;

3、排列数公式;

4、组合;

5、组合数公式;

6、组合数的两个性质;

7、二项式定理;

8、二项展开式的性质。

十一、概率

1、随机事件的概率;

2、等可能事件的概率;

3、互斥事件有一个发生的概率;

4、相互独立事件同时发生的概率;

5、独立重复试验。

必修一函数重点知识整理

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(—x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);

(2)l og a N=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符号由口诀“同正异负”记忆;

(4)a log a N= N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且唯一;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13、恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解。

拓展阅读:高中数学复习方法

1、把答案盖住看例题

例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

2、研究每题都考什么

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

3、错一次反思一次

每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

4、分析试卷总结经验

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

高中数学解题技巧 篇2

a、三角函数与向量解题技巧

平移问题:永远记住左右平移只是对x做变化,上下平移就是对y考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉做变化,永远切记。

b、概率解题技巧

它主要是考我们向量的数量积以及三角函数的化简问题看,同时可能会涉及到正余弦考点:对文科生来说,这个类型的题主要是考我们对题目意思的定理,难度一般不大。理解,在解题过程能学

只要你能熟练掌握公式,这类题都不是问题。会树状图和列表,题目也是相当的简单,只要你能审题准确,这类题型:这部分大题一般都是涉及以下的题型:题都是送分题;对理

最值(值域)、单调性、周期性、对称性、未知数的取值范围、平移科生来说,主要注意结合排列组合、独立重复试验知识点,同时会问题等要求我们准确掌握分

解题思路:布列、期望、方差的公式,难度也是不大,都属于送分题,是要求第一步就是根根据向量公式将表示出来:其表示共有两种方法,一我们必须拿全部分数。

种是模长公式(该种方法是在题目没有告诉坐标的情况下应用),

题型:在这里我就不多说了,都是求概率,没有什么新颖的地方,另一种就是用坐标公式表示出来(该种方法是在题目告诉了坐标),不过要注意我们曾经

即在这里遇到过的线性规划问题,还有就是篮球成功率与命中率和防第二步就是三角函数的化简:化简的方法都是涉及到三角函数的诱守率之间关系的类似

导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),题目。

解题思路:

第一步就是求出总体的情况

第二步就是求出符合题意的情况

第三步就是将两者比起来就是题目要求的概率

这类型题目对理科生来说一定要掌握好期望与方差的公式,同时最重要的是独立重复试验概率的求法。

c、几何解题技巧

考点:这类题主要是考察咱们对空间物体的感觉,希望大家在平时学习过程中,多培养一些立体的、空间的感觉,将自己设身处地于那么一个立体的空间中去,这类题对文科生来说,难度都比较简单,但是对理科生来说,可能会比较复杂一些,特别是在二面角的求法上,对理科生来说是一个巨大的挑战,它需要理科生能对两个面夹角培养出感情来,这样辅助线的做法以及边长的求法就变得如此之简单了。

题型:

这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)

解题思路:

证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。

证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。

证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。

其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。

证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。

体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。

二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点A出发引向另一个面的垂线,垂足为B,然后过垂足B向这两个面的交线做垂线,垂足为C,最后将A点与C点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)

二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。

这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。

d、圆锥曲线解题技巧

考点:这类题型,其实难度真的不是很大,我个人理解主要是考大家的计算能力怎么样,还有就是对题目的理解能力,同时也希望大家都能明白圆锥曲线中a,b,c,e的含义以及他们之间的关系,还有就是椭圆、双曲线、抛物线的两种定义,如果你现在还不知道,趁早去记一下,不然考试的时候都不知道的哈,我真的无语了。

题型:这种类型的题一般都是以下几种出法:第一个问一般情况就是求圆锥曲线方程或者就是求某一个点的轨迹方程,第二个问一般都是涉及到直线的问题,要么就是求范围,要么就是求定值,要么就是求直线方程

解题思路:

求圆锥曲线方程:一般情况下题目有两种求法,一种就是直接根据题目条件来求解(如题目告诉你曲线的离心率和过某一个点坐标),另一种就是隐含的告诉我们椭圆的定义,然后让我们去琢磨其中的意思,去写出曲线的方程,这种问法就比较难点,其实也主要是看我们的基本功底怎么样,对基础扎实的同学来说,这种问法也不是问题的。

求轨迹方程:这种问题需要我们首先对要求点的坐标设出来A(x,y),然后用A点表示出题目中某一已知点B的坐标,然后用表示出来的点坐标代入点B的轨迹方程中,这样就可以求出A点的轨迹方程了,一般求出来都是圆锥曲线方程,如果不是,你就可能错了。直线与圆锥曲线问题:三个步骤你还知道吗(一设、二代,三韦达)。

先做完这个三个步骤,然后看题目给了我们什么条件,然后对条件进行化简(一般的条件都是跟向量呀,斜率呀什么的联系起来,希望大家注意点),在化简的过程中我们需要代韦达进去运算,如果我们在运算的过程中遇到了,一定要记得应用直线方程将表示出来,然后根据韦达化简到最后结果。最后看题目问我们什么,如果问定值,你还知道怎么做么,不知道的就现在来问我,如果问我们范围,你还知道有一个东西么,如果问直线方程,你求出来的直线斜率有两个,还知道怎么做么,如果要想舍去其中一个,你还记得一个东西么。同时如果你是一个追求完美的人,我希望你在做题的时候考虑到直线斜率存在与否的问题,如果你觉得你心胸开阔,那点分数我不要了,我考虑斜率存不存在的问题,那么我就说你牛!

个人理解的话,圆锥曲线都不是很难的,就是计算量比较复杂了一点,但是只要我们用心、专心点,都是可以做出来的,不信你慢慢的去尝试看看!

e、函数导数解题技巧

考点:这种类型的题主要是考大家对导数公式的应用,导数的含义,明确导数可以用来干什么,如果你都不知道导数可以用来干什么,你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。

题型:

最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)

解题思路:

最值、单调性(极值):首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式):其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。

未知数的取值范围(交点或者零点):这种要是没有掌握方法的人,觉得:哇,怎么就那么难呀,其实不然,很简单的,只是各位你要明确这种题的解题思路哈。首先还是需要我们把要求的未知数放在一边,把知道的数放在一边去,这样去求出已知数的最值,然后简单的画一个图形我们就可以分析出未知数的取值范围了,说起来也挺简单的,如果有什么不了解的,可以马上问我,不要留下遗憾。

f、数列解题技巧

考点:

对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。

题型:

一般分为证明和计算(包括通项公式、求和、比较大小),

解题思路:

证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。

计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。

求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!,

三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的不一定那么容易的,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。

比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。

补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。

高中数学知识点总结 篇3

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1)元素的确定性;

2)元素的互异性;

3)元素的无序性。

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1)用拉丁字母表示集合:A={我校的篮球队员}B={12345}。

2)集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A。

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分类:

1)有限集含有有限个元素的集合。

2)无限集含有无限个元素的集合。

3)空集不含任何元素的集合例:{x|x2=—5}。

二、集合间的基本关系

1、“包含”关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA。

2、“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={x|x2—1=0}B={—11}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。

①任何一个集合是它本身的子集。AA

②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果ABBC那么AC

④如果AB同时BA那么A=B

3、不含任何元素的集合叫做空集,记为Φ。

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集。

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。

3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作:CSA即CSA={x?x?S且x?A}。

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

高中数学知识点全总结 篇4

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型。

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查。在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目。

考点五:立体几何与空间向量

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)。在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”。考查的热点是流程图的识别与算法语言的阅读理解。算法与数列知识的网络交汇命题是考查的主流。复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大。推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问。

一键复制全文保存为WORD