什么是暗物质 概念定义是什么【3篇】

暗物质的存在一经证实,意味着人类首次发现了暗物质存在的形式,将是物理学的重大突破。暗物质被称为“世纪之谜”,那么暗物质到底是什么呢?下面是小编辛苦为大家带来的什么是暗物质 概念定义是什么【3篇】,希望能够帮助到大家。

暗物质的概念定义 篇1

暗物质(Dark Matter)是一种因存在现有理论无法解释的现象而假想出的物质,比电子和光子还要小的物质,不带电荷,不与电子发生干扰,能够穿越电磁波和引力场,是宇宙的重要组成部分。暗物质-暗能量是影响当今量子粒子物理+天体物理的“两片乌云”,暗物质的密度非常小,但是数量庞大,因此它的总质量很大,它们代表了宇宙中96%的物质含量,其中人类可见的只占宇宙总物质量的5%不到(约4.9%)。暗物质“未来”的仪器可以直接观测得到,但它能干扰星体发出的光波或引力,其存在能被明显地感受到。暗物质中的“暗物质粒子”的存在有可能是量子粒子物理的弱相互作用力的大质量重粒子的极化粒子类似于“磁单极粒子”的跃迁线性粒子。

暗物质存在的最早证据来源于对矮椭球星系旋转速度的观测。现代天文学通过引力透镜、宇宙中大尺度结构形成、天文观测和膨胀宇宙论研究表明:宇宙的密度可能由约68.3%的暗能量,4.9%的重子物质,26.8%暗物质组成。

新计算机模型:暗物质并非由重粒子组成。 科学家1月29日在阿奇夫论文预印本网站上发表报告称,美国航空航天局的钱德拉X射线天文台的数据显示,以特定能量发出的超量X射线令图表上出现一个隆起。众所周知,X射线谱线能揭示暗物质的存在。暗物质是一种未知的物质,科学家认为宇宙绝大部分由其构成。

暗物质的物质分布 篇2

天文学的观测表明,宇宙中有大量的暗物质,特别是存在大量的非重子物质的暗物质。据天文学观测估计,宇宙的总质量中,重子物质约占2%,也就是说,宇宙中可观测到的各种星际物质、星体、恒星、星团、星云、类星体、星系等的总和只占宇宙总质量的2%,98%的物质还没有被直接观测到。在宇宙中,非重子物质的暗物质当中,冷暗物质约占70%,热暗物质约占30%。

宇宙中的某些地方没有任何暗物质和可见物质,而它们在另外一些地方却异常密集:暗物质聚集在一起,星系则挂靠在暗物质上,就像挂在钩子上的画。

美国明尼苏达大学科学家安吉拉-雷塞特尔是“低温暗物质搜寻计划”项目组成员之一。雷塞特尔表示,“就在我们的周围,存在一种暗物质流。每时每刻都存在一种交互。”她是在美国物理学会一次会议上发表这一理论的。在最新一期《科学快讯》杂志上,雷塞特尔和同事们发表论文声称,他们发现了两起事件,这些事件可能就是由暗物质撞击探测器所引起的。雷塞特尔表示,“我们此前的探测结果从来没有如此发现,这是首次。”

“低温暗物质搜寻计划”位于明尼苏达州地下大约700米的一个矿井中。因此,矿井可以阻止其他任何物质抵达实验设备,除了暗物质。这样宇宙射线和其他粒子可能会与暗物质粒子混淆的可能性已基本被排除。探测器本身也主要是由锗元素或硅元素组成的曲棍球形状的小块。如果锗或硅原子的原子核被暗物质粒子击中,它就会反弹并向探测器发送一个信号。

科学家发现,宇宙中的暗物质与一些小型的临近星系密切相关。这些星系只有数颗恒星,但它们的质量却是这些恒星单独质量的一百倍。这种隐藏的物质就被科学家称作暗物质。

然而,研究人员也无法完全确定他们所探测到的两个信号究竟是由暗物质粒子还是由其他粒子引起的。这两个信号太少,因此科学家们也无法确定。据科学家介绍,他们的计算曾经预测到背景可能会引起一次假事件。“低温暗物质搜寻计划”将继续进行他们的实验以期发现更多实质性的信号。

地球上另一项探寻暗物质的尝试聚焦于强大的粒子加速器,这类加速器可以将亚原子粒子加速到接近光速,然后让它们相互碰撞。科学家们希望通过这种难以置信的高速碰撞从而产生奇异粒子,其中包括暗物质粒子。

然而,即使采用最强大的粒子加速器,至今也未能发现暗物质的任何迹象。美国马里兰大学科学家萨拉-恩诺表示,“你也许会问为什么会这样,为什么组成宇宙大部分的物质粒子为什么在我们的加速器中从来没有发现过。”原因之一可能就是他们的加速器还没达到足够强大。

科学家们也无法确定暗物质粒子究竟有多大,有多重,以及究竟需要多大的能量才能够在实验室中发现它们。或许在任何加速器中都无法找到暗物质粒子。恩诺表示,“我们或许不知道这样一个事实,那就是暗物质粒子是我们无法制造或探测到的粒子。”

最大的希望就寄托于新型的粒子加速器大型强子对撞机身。恩诺表示,“大型强子对撞机或许会最终让我们获得足够的能量以产生暗物质粒子,并在撞击中发出它们。”恩诺也是大型强子对撞机紧凑型μ子螺旋型磁谱仪实验项目组成员之一。

然而在小一些的尺度上,从1Mpc到星系的尺度(Kpc),就出现了不一致。几年前这种不一致性就显现出来了,而且它的出现直接导致了“现行的理论是否正确”这一至关重要的问题的提出。在很大程度上,理论工作者相信,不一致性更可能是由于我们对暗物质特性假设不当所造成的,而不太可能是标准模型本身固有的问题。首先,对于大尺度结构,引力是占主导的,因此所有的计算都是基于牛顿和爱因斯坦的引力定律进行的。在小一些的尺度上,高温高密物质的流体力学作用就必须被包括进去了。其次,在大尺度上的涨落是微小的,而且我们有精确的方法可以对此进行量化和计算。但是在星系的尺度上,普通物质和辐射间的相互作用却极为复杂。在小尺度上的以下几个主要问题。亚结构可能并没有CCDM数值模拟预言的那样普遍。暗物质晕的数量基本上和它的质量成反比,因此应该能观测到许多的矮星系以及由小暗物质晕造成的引力透镜效应,但是观测结果并没有证实这一点。而且那些环绕银河系或者其他星系的暗物质,当它们合并入星系之后会使原先较薄的星系盘变得比观测到得更厚。

暗物质晕的密度分布应该在核区出现陡增,也就是说随着到中心距离的减小,其密度应该急剧升高,但是这与我们观测到的许多自引力系统的中心区域明显不符。正如在引力透镜研究中观测到的,星系团的核心密度就要低于由大质量暗物质晕模型计算出来的结果。普通旋涡星系其核心区域的暗物质比预期的就更少了,同样的情况也出现在一些低表面亮度星系中。矮星系,例如银河系的伴星系玉夫星系和天龙星系,则具有与理论形成鲜明对比的均匀密度中心。流体动力学模拟出来的星系盘其尺度和角动量都小于观测到的结果。在许多高表面亮度星系中都呈现出旋转的棒状结构,如果这一结构是稳定的,就要求其核心的密度要小于预期的值。

可以想象,解决这些日益增多的问题将取决于一些复杂的但却是普通的天体物理过程。一些常规的解释已经被提出来用以解释先前提到的结构缺失现象。但是,总体上看,观测证据显示,从巨型的星系团(质量大于1015个太阳质量)到最小的矮星系(质量小于109个太阳质量)都存在着理论预言的高密度和观测到的低密度之间的矛盾。

暗物质的探测成就 篇3

2012年4月,密歇根大学的Katherine Freese与瑞典斯德哥尔摩大学的Christopher Savage 计算出了暗物质和人体组织发生相互作用的几率。Freese和Savage计算了在平均尺寸的人体中,有多少原子核与穿过的暗物质粒子发生了碰撞。这里的平均尺寸,他们是指一块主要由氢、氧、碳、氮等元素构成的70公斤的肉块。他们说暗物质与人体中氢原子核和氧原子核发生碰撞的可能性很大。关于暗物质的一般假设认为,碰撞一般每天发生大约30次,得到的计算结果是,地球上每个人每年要承受100000次的暗物质粒子碰撞。

2012年5月初,根据几项暗物质探测项目获得的数据进行计算的结果显示,平均大约1分钟就会有一颗暗物质粒子击中人体。由于它们和常规物质发生相互作用的几率非常低,这当然也就意味着WIMP的撞击将不会给人体带来什么大的风险。然而当两颗WIMP粒子相互撞击时会发生湮灭反应,在这一过程中所释放出的能量就会大的多。美国密歇根大学下属密歇根理论物理研究中心教授凯瑟琳�弗莱瑟(Katherine Frees)认为:这两颗粒子的质量都相当于质子质量的100倍,当两者相撞时,它们将拥有200倍质子质量的能量释放。这将是非常剧烈的。如果这种WIMP粒子湮灭反应发生在人体内,它将可能导致对人体有害的突变。当然,发生这种事件的概率非常低。

它就是暗物质,一个让物理学界追寻半个多世纪的谜。但这个谜可能很快揭晓。当地时间3日,诺贝尔奖获得者、华裔物理学家丁肇中及其阿尔法磁谱仪项目团队宣布,已借助阿尔法磁谱仪发现40万个正电子,这些正电子很可能就来自人类一直寻找的暗物质。

安装于空间站上的阿尔法磁谱仪(AMS),科学家已经发现与暗物质有关的线索,低温暗物质搜寻、大型地下氙气实验等都在努力寻找暗物质的踪影。

阿姆斯特丹大学天体物理学家Christoph Weniger认为已经有迹象表明我们已经探测到暗物质粒子,费米望远镜正在对 银河系中央天区进行扫描。费米空间望远镜升空以来,已经被用于多个领域的观测,其中包括对脉冲星和超大质量黑洞的发现任务,探索此类天体与伽玛射线之间的关系。哈佛大学天体物理学家道格�芬克拜纳认为费米空间望远镜为暗物质探索提供了一个新的途径,我们已经开始了一个新的观测战略,答案将在2015年揭晓。

科学家们希望确定银河系中央附近是否存在其他类型的伽玛射线,这些“光束”可能处于130GeV左右的能量区间上,对此,科学家也假设了是否是仪器问题导致的观测异常,加州大学天体物理学西蒙娜�穆尔贾称除了130GeV的光子外,我们还在2-3GeV能量区间内发现了低能伽玛射线。

一键复制全文保存为WORD