八年级下册数学复习提纲人教版优秀4篇

有的同学认为数学很难,但是其实数学也是一门靠背的科目,只要用心去记忆都可以学的很好。为大家精心整理了八年级下册数学复习提纲人教版优秀4篇,希望能够帮助到大家。

提高数学成绩的方法 篇1

1、要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。

2、初中生想要提高数学成绩就一定要重视基础,千里之堤始于砖泥,不重视基础的下场就是你觉得自己的数学学得很好成绩会很好,但是在你成绩出来的时候会低于你的预期很多。很多初中生经常是知道怎么演算就算了,而不去认真的做几遍,好高骛远,总想去冲击难题,结果连考试中最基础的方程都会错。

3、要抓好几个提高数学成绩的必要条件。数学运算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

初二下数学知识总结 篇2

第四章 因式分解

1、因式分解

① 把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式

2、提公因式法

① 多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式

② 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。从而将多项式化成两个因式乘积的形式。这种因式分解的方法叫做提公因式法

3、公式法

① A2-b2=(a+b)(a-b)

② 当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解

③ a2+2ab+b2=(a+b)2 。a2-2ab+b2=(a-b)2

④ 根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解叫做公式法

初二下册数学知识点 篇3

第三章 图形的平移和旋转

1、图形的平移

① 在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小

② 一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等

③ 一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的

2、图形的旋转

① 在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小

② 一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等

3、中心对称

① 如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心

② 成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分

③ 把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心

4、简单的图案设计

八年级下册数学人教版知识点 篇4

一次函数知识点

(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

(二)一次函数的图像及性质

1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3、正比例函数的图像总是过原点。

4.k,b与函数图像所在象限的关系:

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

当k>0,b>0时,直线通过一、二、三象限;

当k>0,b<0时,直线通过一、三、四象限;

当k<0,b>0时,直线通过一、二、四象限;

当k<0,b<0时,直线通过二、三、四象限;

当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

分解因式知识点

一、公式:1、ma+mb+mc=m(a+b+c);

2、a2-b2=(a+b)(a-b);

3、a22ab+b2=(ab)2。

二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算。

2、把一个多项式化成几个整式的积的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母, www.bai huawen. 字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的。(4)所有这些因式的乘积即为公因式。

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式。(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。(3)每一个多项式都要分解到不能再分解为止。

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。

分解因式的方法:1、提公因式法。2、运用公式法。

一键复制全文保存为WORD