高一数学集合训练题及答案(最新3篇)

集合总是出现在高中数学试卷的第一道选择题,集合其实并不难,以下是人见人爱的小编分享的高一数学集合训练题及答案(最新3篇),如果对您有一些参考与帮助,请分享给最好的朋友。

高一数学练习题 篇1

1.以下元素的全体不能 够构成集合的是( )

A. 中国古代四大发明 B. 地球上的小河流

C. 方程 的实数解 D. 周长为10cm的三角形

2.给出下列关系:① ; ② ;③④ . 其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

3.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为 或{3,2,1};(3)方程的所有解的集合可表示为{1,1,2};(4)集合是有限集。 其中正确的说法是( )

A. 只有(1)和(4) B. 只有(2) 和(3)

C. 只有(2) D. 以上四种说法都不对

4.下列所给关系正确的个数是().

① ②3 ③0 ④|-4|N*.

A.1 B.2 C.3 D.4

5.下面有四个语句:

①集合N*中最小的数是0;②-aN,则a③aN,bN,则a+b的最小值是2;④x2+1=2x的解集中含有2个元素。

其中正确语句的个数是().

A.0 B.1 C.2 D.3

高一数学集合训练题及答案 篇2

1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()

A.{x|x是小于18的正奇数}

B.{x|x=4k+1,kZ,且k5}

C.{x|x=4t-3,tN,且t5}

D.{x|x=4s-3,sN_,且s5}

解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的。

2.集合P={x|x=2k,kZ},M={x|x=2k+1,kZ},S={x|x=4k+1,kZ},aP,bM,设c=a+b,则有()

A.cP B.cM

C.cS D.以上都不对

解析:选B.∵aP,bM,c=a+b,

设a=2k1,k1Z,b=2k2+1,k2Z,

c=2k1+2k2+1=2(k1+k2)+1,

又k1+k2Z,cM.

3.定义集合运算:A_B={z|z=xy,xA,yB},设A={1,2},B={0,2},则集合A_B的所有元素之和为()

A.0 B.2

C.3 D.6

解析:选D.∵z=xy,xA,yB,

z的取值有:10=0,12=2,20=0,22=4,

故A_B={0,2,4},

集合A_B的所有元素之和为:0+2+4=6.

4.已知集合A={1,2,3},B={1,2},C={(x,y)|xA,yB},则用列举法表示集合C=____________.

解析:∵C={(x,y)|xA,yB},

满足条件的点为:

(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).

答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}

高一数学练习题 篇3

1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()

A.{x|x是小于18的正奇数}

B.{x|x=4k+1,kZ,且k5}

C.{x|x=4t-3,tN,且t5}

D.{x|x=4s-3,sN*,且s5}

解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的。

2.集合P={x|x=2k,kZ},M={x|x=2k+1,kZ},S={x|x=4k+1,kZ},aP,bM,设c=a+b,则有()

A.cP

B.cM

C.cS

D.以上都不对

解析:选B.∵aP,bM,c=a+b,

设a=2k1,k1Z,b=2k2+1,k2Z,

c=2k1+2k2+1=2(k1+k2)+1,

又k1+k2Z,cM.

3.定义集合运算:A*B={z|z=xy,xA,yB},设A={1,2},B={0,2},则集合A*B的所有元素之和为()

A.0

B.2

C.3

D.6

解析:选D.∵z=xy,xA,yB,

z的取值有:10=0,12=2,20=0,22=4,

故A*B={0,2,4},

集合A*B的所有元素之和为:0+2+4=6.

4.已知集合A={1,2,3},B={1,2},C={(x,y)|xA,yB},则用列举法表示集合C=____________.

解析:∵C={(x,y)|xA,yB},

满足条件的点为:

(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).

答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}

1.集合{(x,y)|y=2x-1}表示()

A.方程y=2x-1

B.点(x,y)

C.平面直角坐标系中的所有点组成的集合

D.函数y=2x-1图象上的所有点组成的集合

答案:D

2.设集合M={xR|x33},a=26,则()

A.aM

B.aM

C.{a}M

D.{a|a=26}M

解析:选B.(26)2-(33)2=24-270,

故2633.所以aM.

3.方程组x+y=1x-y=9的解集是()

A.(-5,4)

B.(5,-4)

C.{(-5,4)}

D.{(5,-4)}

解析:选D.由x+y=1x-y=9,得x=5y=-4,该方程组有一组解(5,-4),解集为{(5,-4)}.

4.下列命题正确的有()

(1)很小的实数可以构成集合;

(2)集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合;

(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;

(4)集合{(x,y)|xy0,x,yR}是指第二和第四象限内的点集。

A.0个

B.1个

C.2个

D.3个

解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴。

5.下列集合中,不同于另外三个集合的是()

A.{0}

B.{y|y2=0}

C.{x|x=0}

D.{x=0}

解析:选D.A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即x=0.

6.设P={1,2,3,4},Q={4,5,6,7,8},定义P*Q={(a,b)|aP,bQ,ab},则P*Q中元素的个数为()

A.4

B.5

C.19

D.20

解析:选C.易得P*Q中元素的个数为45-1=19.故选C项。

7.由实数x,-x,x2,-3x3所组成的集合里面元素最多有________个。

解析:x2=|x|,而-3x3=-x,故集合里面元素最多有2个。

答案:2

8.已知集合A=xN|4x-3Z,试用列举法表示集合A=________.

解析:要使4x-3Z,必须x-3是4的约数。而4的约数有-4,-2,-1,1,2,4六个,则x=-1,1,2,4,5,7,要注意到元素x应为自然数,故A={1,2,4,5,7}

答案:{1,2,4,5,7}

9.集合{x|x2-2x+m=0}含有两个元素,则实数m满足的条件为________.

解析:该集合是关于x的一元二次方程的解集,则=4-4m0,所以m1.

答案:m1

10.用适当的方法表示下列集合:

(1)所有被3整除的整数;

(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);

(3)满足方程x=|x|,xZ的所有x的值构成的集合B.

解:(1){x|x=3n,n

(2){(x,y)|-12,-121,且xy

(3)B={x|x=|x|,xZ}.

11.已知集合A={xR|ax2+2x+1=0},其中aR.若1是集合A中的一个元素,请用列举法表示集合A.

解:∵1是集合A中的一个元素,

1是关于x的方程ax2+2x+1=0的一个根,

a12+21+1=0,即a=-3.

方程即为-3x2+2x+1=0,

解这个方程,得x1=1,x2=-13,

集合A=-13,1.

12.已知集合A={x|ax2-3x+2=0},若A中元素至多只有一个,求实数a的取值范围。

解:①a=0时,原方程为-3x+2=0,x=23,符合题意。

②a0时,方程ax2-3x+2=0为一元二次方程。

由=9-8a0,得a98.

当a98时,方程ax2-3x+2=0无实数根或有两个相等的实数根。

综合①②,知a=0或a98.

一键复制全文保存为WORD