一、勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3、勾股数
满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
二、证明
1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。
2、三角形内角和定理:三角形三个内角的和等于180度。
(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。
(2)三角形的外角与它相邻的内角是互为补角。
3、三角形的外角与它不相邻的内角关系
(1)三角形的一个外角等于和它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个和它不相邻的内角。
4、证明一个命题是真命题的基本步骤
(1)根据题意,画出图形。
(2)根据条件、结论,结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
八年级下册数学复习资料
【零指数幂与负整指数幂】
重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数
难点:理解和应用整数指数幂的性质。
一、复习练习:
1、;=;=,=,=。
2、不用计算器计算:÷(—2)2—2-1+
二、指数的范围扩大到了全体整数。
1、探索
现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数。那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立。
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。
3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科学记数法
1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.
2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
归纳:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示。
分析我们知道:1纳米=米。由=10-9可知,1纳米=10-9米。
所以35纳米=35×10-9米。
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以这个纳米粒子的直径为3.5×10-8米。
5、练习
①用科学记数法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科学记数法填空:
(1)1秒是1微秒的1000000倍,则1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1纳米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米。
一、克服心理疲劳
第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。
二、战胜高原现象
复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。
三、重视复习“错误”
如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。
四、把握心理特点搞好考前复习
实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。
1、课本不容忽视
对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。
2、错题本
相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。
[一元一次方程与一次函数的关系]
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值。
[一次函数与一元一次不等式的关系]
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围。
[一次函数与二元一次方程组]
(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同。
(2)二元一次方程组 的解可以看作是两个一次函数y= 和y= 的图象交点。