上学的时候,大家对知识点应该都不陌生吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。哪些才是我们真正需要的知识点呢?下面是的小编为您带来的高一数学必修一函数及其表示知识点【最新5篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
知识点总结
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性
1、函数单调性的定义
2、函数单调性的判断和证明:
(1)定义法
(2)复合函数分析法
(3)导数证明法
(4)图象法
二、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明方法
3、函数的周期性的判定方法
三、函数的图象
1、函数图象的作法
(1)描点法
(2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
四、常见考法
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。
五、误区提醒
1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高中学生学数学靠的也是一个字:悟!
先看笔记后做作业
有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
做题之后加强反思
有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的`需要,几乎天天都在写字。结果,写了几十年的字了,他写字的水平能有什么提高吗?一般说,他写字的水平常常还是原来的水平。也就是说多写字不等于是受到了写字的训练!要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。
主动复习总结提高
进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。怎样做章节总结呢?
打个比方,就象女孩洗头那样。1、把头发弄散乱,加以清洗。2、中间分缝。3、将其一半分股编绕,捆结固定。4、再将另一半分股编绕,捆结固定。5、疏理辫稍。6、照镜子调整。我们进行章节总结的过程也是大体如此。
1、要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。这样积累起来的资料才有活力,才能用的上。
2、把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。要把对技能的要求,列进这两部分中的一部分,不要遗漏。
3、在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。要做到三会两用。即:会文字表述,会图象符号表述,会推导证明。同时能从正反两方面对其进行应用。
4、把重要的,典型的各种问题进行编队。要尽量地把他们分类,找出它们之间的位置关系,总结出问题间的来龙去脉。就象我们欣赏一场团体操表演,我们不能只盯住一个人看,看他从哪跑到哪,都做了些什么动作。我们一定要居高临下地看,看全场的结构和变化。不然的话,陷入题海,徒劳无益。这一点,是提高高中数学水平的关键所在。
5、总结那些尚未归类的问题,作为备注进行补充说明。
6、找一份适当的测验试卷,例如北京四中的本章节测试试卷,电脑网校的本节试卷,我校去年此时所用的试卷。一定要计时测验。然后再对照答案,查漏补缺。
重视改错错不重犯
一定要重视改错工作,做到错不再犯。初中数学教学采取的方法是,把各种可能的错误,都告诉学生注意,只要有一人出过错,就要提出来,让全体同学引
为借鉴。这叫“一人有病,全体吃药。”高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能“谁有病,谁吃药”。如果学生“有病”,而自己却又忘记吃药,那么没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处“地雷”,迟早要惹祸。有的学生认为,自己考试成绩上不去,是因为自己做题太粗心。而且,自己特爱粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果新司机真正掌握了这一套,请问,可以同意他开车上街吗?恐怕他自己也知道自己还缺乏练习。一两次能正确地完成任务,并不能说明永远不出错。练习的数量不够,往往是学生出错的真正原因。大家一定要看到,如果,自己的基础背景是地雷密布,隐患无穷,那么,今后的数学将是难以学好的。
积累资料随时整理
要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
精挑慎选课外读物
初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则大不相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。
配合老师主动学习
高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明。因此,高中新生必须提高自己学习的主动性。准备向将来的大学生的学习方法过渡。
合理规划步步为营
高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。
一、函数的概念
在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。
函数的概念和图象
重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。
二、函数关系的建立
“探索具体问题中的数量关系和变化规律,并能运用函数进行描述和解决问题”,这是《课标》关于函数目标的。一段描述。因此,各地中考试卷都有“函数建模及其应用”类问题,而建模的首要是建立函数表达式。
三、函数的运算
函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。
四、函数的基本性质
在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
高一数学函数知识点总结3
1、 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5、方程k=f(x)有解 k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7、(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );
8、 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:
⑴若x处于分母位置,则分母x不能为0。
⑵偶次方根的被开方数不小于0。
⑶对数式的真数必须大于0。
⑷指数对数式的底,不得为1,且必须大于0。
⑸指数为0时,底数不得为0。
⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数
⑴表达式相同:与表示自变量和函数值的字母无关。
⑵定义域一致,对应法则一致。
4、函数值域的求法
⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵图像法:适用于易于画出函数图像的函数已经分段函数。
⑶配方法:主要用于二次函数,配方成y=(x-a)2+b的形式。
⑷代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换
⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵伸缩变换:在x前加上系数。
⑶对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数
⑴在定义域的不同部分上有不同的解析式表达式。
⑵各部分自变量和函数值的取值范围不同。
⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。
1.函数的定义
函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数,记作y=f(x),xA
2.函数的定义域
函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式
求函数的解析式一般有三种种情况:
(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。