在日常生活或是工作,学习中,大家一定都或多或少地接触过一些数学知识,下面是的小编为您带来的四年级奥数经典例题及答案(4篇),在大家参照的同时,也可以分享一下给您最好的朋友。
1.行程问题
甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙。问:甲、乙二人的速度各是多少?
解答:分析若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度。综合列式计算如下:
解:乙的'速度为:10÷5×4÷2=4(米/秒)
甲的速度为:10÷5+4=6(米/秒)
答:甲的速度为6米/秒,乙的速度为4米/秒。
2.行程问题
上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他。然后爸爸立刻回家,到家后又立刻回头去追小明、再追上他的时候,离家恰好是8千米,问这时是几点几分?
解答:从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米。现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米。爸爸总共骑了16千米,需16分钟,8+16=24(分钟),这时是8点32分。
饲养员小王在自家庭院里养了鸡和兔共40只,他们的脚数一共是108只,小王养的鸡和兔各多少只?
答案与解析:
假设小王养了40只兔,一共就有4×40=160(只)脚,比实际的108只多了160-108=52(只)脚。多出的52只脚是因为把饲养的鸡理解成兔造成的,也就是每只鸡被多算了4-2=2(只)脚,因此,52里面有多少个2就会有多少只鸡,即:52÷2=26(只)鸡。兔的只数:40-26=14(只)
解:
鸡的只数:(4×40-108)÷(4-2)=26(只)
兔的只数:40-26=14(只)
答:小王饲养26只鸡,14只兔
例1:儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁?
分析与解析:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是:30+5=35(岁)。
例2:修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?
分析与解析:
(1)修这条公路共需要多少个劳动日(总量)?
60×80=4800(劳动日)。
(2)60人工作20天后,还剩下多少劳动日?
4800-60×20=3600(劳动日)。
(3)剩下的工程增加30人后还需多少天完成?
3600÷(60+30)=40(天)。
解:(60×80-60×20)÷(60+30)=40(天)。
答:再用40天可以完成。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?
分析与解析:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以:买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套)。
例4:小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。问:有多少个小朋友分多少粒糖?
分析与解析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为:4×15+9=69(粒)。
解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。
答:有15个小朋友,分69粒糖。
1、求1~2009连续自然数的全部数字之和。
2、一个三位数,各位上数字的和为15,百位上的数字比个位上的数字小5;如果把个位和百位数字对调,那么得到的新数比原数的3倍小39。求原来的这个三位数。
济南小学四年级奥数题答案
1、分析不妨先求0~1999的所有数字之和,再求2000~2009的所有数字之和。
解(1+9×3)×(2000÷2)
=28×1000
=28000
2×10+1+2+…+9
=20+45
=65
28000+65
=28065
答所求数字之和为28065。
2、解答:可设个位上的数字为a,则根据题意,百位上的数字为a-5,十位上的数字为15-a-(a-5)=20-2a,原数为(a-5)×100+(20-2a)×10+a=81a-300
新数为a×100+(20-2a)×10+a-5=81a+195
因为新数比原数3倍小39,所以
81a+195=3×(81a-300)-39162a=900+39+195
a=7
所以a-5=2,15-2-7=6,所求的数是267。